Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(8): 087201, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898108

RESUMO

Damping is usually associated with irreversibility. Here, we present a counterintuitive concept to achieve time reversal of waves propagating in a lossless medium using a transitory dissipation pulse. Applying a sudden and strong damping in a limited time generates a time-reversed wave. In the limit of a high damping shock, this amounts to "freezing" the initial wave by maintaining the wave amplitude while canceling its time derivative. The initial wave then splits in two counterpropagating waves with half of its amplitude and time evolutions in opposite directions. We implement this damping-based time reversal using phonon waves propagating in a lattice of interacting magnets placed on an air cushion. We show with computer simulations that this concept also applies to broadband time reversal in complex disordered systems.

2.
PLoS One ; 19(1): e0295817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165851

RESUMO

Mixed Reality (MR) techniques, such as Virtual (VR) and Augmented Reality (AR), are gaining popularity as a new methodology for neuroscience and psychology research. In studies involving audiovisual stimuli, it is crucial to have MR systems that can deliver these bimodal stimuli with controlled timing between the onset of each modality. However, the extent to which modern MR setups can achieve the necessary precision and accuracy of audiovisual stimulus onset asynchronies (SOAs) remains largely unknown. The objective of this study is to systematically evaluate the lag and variability between the auditory and visual onset of audiovisual stimuli produced on popular modern MR head-mounted displays (HMDs) from Meta, Microsoft, HTC, and Varjo in conjunction with commonly used development environments such as Unity and the Unreal Engine. To accomplish this, we developed a low-cost measurement system that enabled us to measure the actual SOA and its associated jitter. Our findings revealed that certain MR systems exhibited significant SOAs, with one case averaging 156.63 ms, along with jitter of up to ±11.82 ms. Using our methodology, we successfully conducted experimental calibration of a headset, achieving SOAs of -3.89 ± 1.56 ms. This paper aims to raise awareness among neuroscience researchers regarding the limitations of MR systems in delivering audiovisual stimuli without prior calibration. Furthermore, we present cost-effective methods to calibrate these systems, thereby facilitating the replication of future results.


Assuntos
Realidade Aumentada , Neurociências , Percepção Visual , Fatores de Tempo , Estimulação Luminosa/métodos
3.
Disabil Rehabil Assist Technol ; 13(8): 777-784, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-28920499

RESUMO

BACKGROUND: Visually disabled people increasingly use computers in everyday life, thanks to novel assistive technologies better tailored to their cognitive functioning. Like sighted people, many are interested in computer games - videogames and audio-games. Tactile-games are beginning to emerge. The Tactile Radar is a device through which a visually disabled person is able to detect distal obstacles. In this study, it is connected to a computer running a tactile-game. The game consists in finding and collecting randomly arranged coins in a virtual room. METHODS: The study was conducted with nine congenital blind people including both sexes, aged 20-64 years old. Complementary methods of first and third person were used: the debriefing interview and the quasi-experimental design. RESULTS: The results indicate that the Tactile Radar is suitable for the creation of computer games specifically tailored for visually disabled people. CONCLUSIONS: Furthermore, the device seems capable of eliciting a powerful immersive experience. Methodologically speaking, this research contributes to the consolidation and development of first and third person complementary methods, particularly useful in disabled people research field, including the evaluation by users of the Tactile Radar effectiveness in a virtual reality context. Implications for rehabilitation Despite the growing interest in virtual games for visually disabled people, they still find barriers to access such games. Through the development of assistive technologies such as the Tactile Radar, applied in virtual games, we can create new opportunities for leisure, socialization and education for visually disabled people. The results of our study indicate that the Tactile Radar is adapted to the creation of video games for visually disabled people, providing a playful interaction with the players.


Assuntos
Radar , Tato , Interface Usuário-Computador , Jogos de Vídeo , Pessoas com Deficiência Visual/reabilitação , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vibração , Realidade Virtual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA