Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(43): 29364-29371, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29075691

RESUMO

The conduction and optoelectronic properties of transparent conductive oxides can be largely modified by intentional inclusion of dopants over a very large range of concentrations. However, the simultaneous presence of structural defects results in an unpredictable complexity that prevents a clear identification of chemical and structural properties of the final samples. By exploiting the unique chemical sensitivity of Hard X-ray Photoelectron Spectra and Near Edge X-ray Absorption Fine Structure in combination with Density Functional Theory, we determine the contribution to the spectroscopic response of defects in Al-doped ZnO films. Satellite peaks in O1s and modifications at the O K-edge allow the determination of the presence of H embedded in ZnO and the very low concentration of Zn vacancies and O interstitials in undoped ZnO. Contributions coming from substitutional and (above the solubility limit) interstitial Al atoms have been clearly identified and have been related to changes in the oxide stoichiometry and increased oxygen coordination, together with small lattice distortions. In this way defects and doping in oxide films can be controlled, in order to tune their properties and improve their performances.

2.
Nanotechnology ; 25(38): 385703, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25181396

RESUMO

Remanent state and magnetization reversal processes of a series of cobalt antidot arrays with a fixed hole diameter (d ≈ 55 nm) and an array periodicity (p) ranging between 95 and 524 nm were studied by in situ Lorentz microscopy (LM) as a function of the magnetic field. At remanence, defocused LM images showed the periodicity dependence of the magnetic states inside the lattice. A remarkable transition was observed in the type of domain structures as a function of p: for the large periodicities (p > 300 nm), conventional 90° and 180° domain walls were formed, whereas in small-period antidot arrays (p â‰¦ 160 nm) magnetic superdomain walls (SDWs) were nucleated to separate regions with different average magnetization direction, the so-called magnetic superdomains. In the SDW regime, a low-frequency Fourier filtering method was implemented to allow a quantitative analysis of the LM images by the transport of intensity equation method. In situ LM experiments under applied magnetic fields were performed to study the reversal magnetization process in a particular array (p = 160 nm), and clear differences were observed as a function of the magnetic field orientation. The switching process under magnetic fields parallel to the horizontal antidot rows occurs in two stages: the system first nucleates and propagates horizontal SDWs, parallel to the field. Then, at higher magnetic fields, vertical SDWs, perpendicular to the field, appear before saturation. When the magnetic field is applied at 45° with respect to the antidot rows, both horizontal and vertical SDWs are nucleated and propagated simultaneously. All the experiments were successfully correlated with micromagnetic simulations. The current study sheds new light on the magnetization reversal processes of antidot arrays and opens new possibilities of exploiting the potential of high-resolution in situ LM and new data analysis procedures to probe magnetization processes in nanomagnetism, particularly in periodic arrays of nanomagnets.

3.
J Nanosci Nanotechnol ; 12(9): 7437-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23035490

RESUMO

We have performed an experimental study on the influence of a ferromagnetic continuous film in the magnetization reversal processes in discrete submicrometric antidot arrays fabricated on it. In order to compare the magnetic properties, two sets of antidot arrays have been fabricated over a cobalt thin film: embedded in the continuous film, and isolated by a trench surrounding the array. X-ray photoemission electron microscopy images of the virgin state show the same magnetic domain distribution in both sets of samples, finding no evidence of any effect of the surrounding film. This result is supported by the hysteresis loops measured with magneto-optical Kerr effect, as isolated and non-isolated arrays present almost coincident loops. A huge increase of the coercivity of the film is achieved, and the expected dependence on the geometrical parameters of the array is found, connecting the previous studies on the micro- and nanometric scales.

4.
Rev Sci Instrum ; 89(5): 054101, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864817

RESUMO

We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.

5.
J Phys Condens Matter ; 26(15): 156001, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24675016

RESUMO

X-ray magnetic circular dichroism (XMCD), longitudinal (χac) and transverse (TS) ac magnetic susceptibility have been measured in the RCo2 series (R = Ho, and Tm) as a function of temperature and applied magnetic field. We show that parimagnetism is a general behavior among the RCo2 ferrimagnetic series (R being a heavy rare-earth ion). XMCD results supply evidence of the presence of two compensation temperatures above Tc, defining two different parimagnetic configurations, which is a fully unexpected result. The inverse χ'ac curve exhibits a small anomaly which vanishes under low applied magnetic fields. The combination of TS and XMCD measurements allows one to depict new magnetic phase diagrams for these compounds of the RCo2 series. A new scenario allowing one to understand the observed phenomenology as a Griffiths phase-like behavior is proposed, where the amorphous RCo2 represents the undiluted system case.


Assuntos
Dióxido de Carbono/química , Hólmio/química , Campos Magnéticos , Imãs/química , Modelos Químicos , Túlio/química , Dicroísmo Circular , Simulação por Computador , Processamento de Sinais Assistido por Computador , Temperatura , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA