Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Small ; 20(15): e2306474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38085683

RESUMO

Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Humanos , Nanopartículas Metálicas/química , Ouro/química , Coroa de Proteína/química , Nanopartículas/química , Proteínas , Nanomedicina
2.
Nano Lett ; 23(10): 4660-4668, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155280

RESUMO

Oxidative stress is known to be the cause of several neurovascular diseases, including neurodegenerative disorders, since the increase of reactive oxygen species (ROS) levels can lead to cellular damage, blood-brain barrier leaking, and inflammatory pathways. Herein, we demonstrate the therapeutic potential of 5 nm platinum nanoparticles (PtNPs) to effectively scavenge ROS in different cellular models of the neurovascular unit. We investigated the mechanism underlying the PtNP biological activities, analyzing the influence of the evolving biological environment during particle trafficking and disclosing a key role of the protein corona, which elicited an effective switch-off of the PtNP catalytic properties, promoting their selective in situ activity. Upon cellular internalization, the lysosomal environment switches on and boosts the enzyme-like activity of the PtNPs, acting as an intracellular "catalytic microreactor" exerting strong antioxidant functionalities. Significant ROS scavenging was observed in the neurovascular cellular models, with an interesting protective mechanism of the Pt-nanozymes along lysosomal-mitochondrial axes.


Assuntos
Nanopartículas Metálicas , Espécies Reativas de Oxigênio/metabolismo , Platina , Estresse Oxidativo , Antioxidantes
3.
Nano Lett ; 23(7): 2981-2990, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36917703

RESUMO

Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated in vivo and has highlighted some controversy. Herein, we employed two in vitro BBB models of increasing complexity to investigate the bionano interactions with graphene oxide (GO) and few-layer graphene (FLG): a 2D murine Transwell model, followed by a 3D human multicellular assembloid, to mimic the complexity of the in vivo architecture and intercellular crosstalk. We developed specific methodologies to assess the translocation of GO and FLG in a label-free fashion and a platform applicable to any nanomaterial. Overall, our results show good biocompatibility of the two GRMs, which did not impact the integrity and functionality of the barrier. Sufficiently dispersed subpopulations of GO and FLG were actively uptaken by endothelial cells; however, the translocation was identified as a rare event.


Assuntos
Barreira Hematoencefálica , Grafite , Humanos , Animais , Camundongos , Células Endoteliais , Encéfalo
4.
Biomacromolecules ; 24(10): 4478-4493, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757736

RESUMO

This study is about multiple responsiveness in biomedical materials. This typically implies "orthogonality" (i.e., one response does not affect the other) or synergy (i.e., one increases efficacy or selectivity of the other), but an antagonist effect between responses may also occur. Here, we describe a family of very well-defined amphiphilic and micelle-forming block copolymers, which show both oxidative and temperature responses. They are produced via successive anionic ring-opening polymerization of episulfides and RAFT polymerization of dialkylacrylamides and differ only in the ratio between inert (N,N-dimethylacrylamide, DMA) and temperature-sensitive (N,N-diethylacrylamide, DEA) units. By scavenging Reactive Oxygen Species (ROS), these polymers are anti-inflammatory; through temperature responsiveness, they can macroscopically aggregate, which may allow them to form depots upon injection. The localization of the anti-inflammatory action is an example of synergy. An extensive evaluation of toxicity and anti-inflammatory effects on in vitro models, including BV2 microglia, C8D30 astrocytes and primary neurons, shows a link between capacity of aggregation and detrimental effects on viability which, albeit mild, can hinder the anti-inflammatory potential (antagonist action). Although limited in breadth (e.g., only in vitro models and only DEA as a temperature-responsive unit), this study suggests that single-responsive controls should be used to allow for a precise assessment of the (synergic or antagonist) potential of double-responsive systems.


Assuntos
Doenças Neuroinflamatórias , Polímeros , Humanos , Micelas , Espécies Reativas de Oxigênio , Anti-Inflamatórios , Polimerização
5.
Anal Chem ; 93(2): 784-791, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33285070

RESUMO

The formation of the biomolecular corona represents a crucial factor in controlling the biological interactions and trafficking of nanomaterials. In this context, the availability of key epitopes exposed on the surface of the corona, and able to engage the biological machinery, is important to define the biological fate of the material. While the full biomolecular corona composition can be investigated by conventional bottom-up proteomics, the assessment of the spatial orientation of proteins in the corona in a high-throughput fashion is still challenging. In this work, we show that labeling corona proteins with isobaric tags in their native conditions and analyzing the MS/MS spectra of tryptic peptides allow an easy and high-throughput assessment of the inner/outer orientation of the corresponding proteins in the original corona. We put our results in the context of what is currently known of the protein corona of graphene-based nanomaterials. Our conclusions are in line with previous data and were confirmed by in silico calculations.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas/química , Proteômica/métodos , Modelos Moleculares , Conformação Proteica
6.
Nano Lett ; 19(2): 1260-1268, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30628448

RESUMO

The biological interactions of graphene have been extensively investigated over the last 10 years. However, very little is known about graphene interactions with the cell surface and how the graphene internalization process is driven and mediated by specific recognition sites at the interface with the cell. In this work, we propose a methodology to investigate direct molecular correlations between the biomolecular corona of graphene and specific cell receptors, showing that key protein recognition motifs, presented on the nanomaterial surface, can engage selectively with specific cell receptors. We consider the case of apolipoprotein A-I, found to be very abundant in the graphene protein corona, and observe that the uptake of graphene nanoflakes is somewhat increased in cells with greatly elevated expression of scavenger receptors B1, suggesting a possible mechanism of endogenous interaction. The uptake results, obtained by flow cytometry, have been confirmed using Raman microspectroscopic mapping, exploiting the strong Raman signature of graphene.


Assuntos
Apolipoproteína A-I/metabolismo , Grafite/metabolismo , Nanopartículas/metabolismo , Coroa de Proteína/metabolismo , Receptores Depuradores/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Modelos Moleculares
7.
Angew Chem Int Ed Engl ; 56(15): 4215-4218, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28295888

RESUMO

Ultrasmall nanoparticles (USNPs), usually defined as NPs with core in the size range 1-3 nm, are a class of nanomaterials which show unique physicochemical properties, often different from larger NPs of the same material. Moreover, there are also indications that USNPs might have distinct properties in their biological interactions. For example, recent in vivo experiments suggest that some USNPs escape the liver, spleen, and kidney, in contrast to larger NPs that are strongly accumulated in the liver. Here, we present a simple approach to study the biomolecular interactions at the USNPs bio-nanointerface, opening up the possibility to systematically link these observations to microscopic molecular principles.


Assuntos
Líquidos Corporais/química , Ouro/química , Nanopartículas Metálicas/química , Proteínas/química , Humanos , Ligantes , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Nanoscale ; 16(5): 2419-2431, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226500

RESUMO

The unique properties of few-layered graphene (FLG) make it interesting for a variety of applications, including biomedical applications, such as tissue engineering and drug delivery. Although different studies focus on applications in the central nervous system, its interaction with the peripheral nervous system has been so far overlooked. Here, we investigated the effects of exposure to colloidal dispersions of FLG on the sensory neurons of the rat dorsal root ganglia (DRG). We found that the FLG flakes were actively internalized by sensory neurons, accumulated in large intracellular vesicles, and possibly degraded over time, without major toxicological concerns, as neuronal viability, morphology, protein content, and basic electrical properties of DRG neurons were preserved. Interestingly, in our electrophysiological investigation under noxious stimuli, we observed an increased functional response upon FLG treatment of the nociceptive subpopulation of DRG neurons in response to irritants specific for chemoreceptors TRPV1 and TRPA1. The observed effects of FLG on DRG neurons may open-up novel opportunities for applications of these materials in specific disease models.


Assuntos
Grafite , Nociceptores , Ratos , Animais , Nociceptores/metabolismo , Irritantes/metabolismo , Irritantes/farmacologia , Grafite/farmacologia , Grafite/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , Gânglios Espinais/metabolismo
9.
Nanoscale Horiz ; 9(5): 799-816, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38563642

RESUMO

The biological fate of nanomaterials (NMs) is driven by specific interactions through which biomolecules, naturally adhering onto their surface, engage with cell membrane receptors and intracellular organelles. The molecular composition of this layer, called the biomolecular corona (BMC), depends on both the physical-chemical features of the NMs and the biological media in which the NMs are dispersed and cells grow. In this work, we demonstrate that the widespread use of 10% fetal bovine serum in an in vitro assay cannot recapitulate the complexity of in vivo systemic administration, with NMs being transported by the blood. For this purpose, we undertook a comparative journey involving proteomics, lipidomics, high throughput multiparametric in vitro screening, and single molecular feature analysis to investigate the molecular details behind this in vivo/in vitro bias. Our work indirectly highlights the need to introduce novel, more physiological-like media closer in composition to human plasma to produce realistic in vitro screening data for NMs. We also aim to set the basis to reduce this in vitro-in vivo mismatch, which currently limits the formulation of NMs for clinical settings.


Assuntos
Nanoestruturas , Coroa de Proteína , Humanos , Nanoestruturas/química , Coroa de Proteína/química , Animais , Proteômica/métodos , Lipidômica/métodos , Bovinos
10.
ACS Nano ; 18(8): 6038-6094, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350010

RESUMO

Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.

11.
ACS Nano ; 17(22): 22800-22820, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934489

RESUMO

Degeneration of photoreceptors in age-related macular degeneration (AMD) is associated with oxidative stress due to the intense aerobic metabolism of rods and cones that if not properly counterbalanced by endogenous antioxidant mechanisms can precipitate photoreceptor degeneration. In spite of being a priority eye disease for its high incidence in the elderly, no effective treatments for AMD exist. While systemic administration of antioxidants has been unsuccessful in slowing down degeneration, locally administered rare-earth nanoparticles were shown to be effective in preventing retinal photo-oxidative damage. However, because of inherent problems of dispersion in biological media, limited antioxidant power, and short lifetimes, these NPs are still confined to the preclinical stage. Here we propose platinum nanoparticles (PtNPs), potent antioxidant nanozymes, as a therapeutic tool for AMD. PtNPs exhibit high catalytic activity at minimal concentrations and protect primary neurons against oxidative insults and the ensuing apoptosis. We tested the efficacy of intravitreally injected PtNPs in preventing or mitigating light damage produced in dark-reared albino Sprague-Dawley rats by in vivo electroretinography (ERG) and ex vivo retina morphology and electrophysiology. We found that both preventive and postlesional treatments with PtNPs increased the amplitude of ERG responses to light stimuli. Ex vivo recordings demonstrated the selective preservation of ON retinal ganglion cell responses to light stimulation in lesioned retinas treated with PtNPs. PtNPs administered after light damage significantly preserved the number of photoreceptors and inhibited the inflammatory response to degeneration, while the preventive treatment had a milder effect. The data indicate that PtNPs can effectively break the vicious cycle linking oxidative stress, degeneration, and inflammation by exerting antioxidant and anti-inflammatory actions. The increased photoreceptor survival and visual performances in degenerated retinas, together with their high biocompatibility, make PtNPs a potential strategy to cure AMD.


Assuntos
Degeneração Macular , Nanopartículas Metálicas , Degeneração Retiniana , Humanos , Ratos , Animais , Idoso , Platina/farmacologia , Platina/uso terapêutico , Antioxidantes/farmacologia , Nanopartículas Metálicas/uso terapêutico , Retina/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Macular/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/complicações , Ratos Sprague-Dawley , Luz , Modelos Animais de Doenças
12.
Cell Death Dis ; 13(7): 582, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790716

RESUMO

Crosstalk mechanisms between pericytes, endothelial cells, and astrocytes preserve integrity and function of the blood-brain-barrier (BBB) under physiological conditions. Long intercellular channels allowing the transfer of small molecules and organelles between distant cells called tunneling nanotubes (TNT) represent a potential substrate for energy and matter exchanges between the tripartite cellular compartments of the BBB. However, the role of TNT across BBB cells under physiological conditions and in the course of BBB dysfunction is unknown. In this work, we analyzed the TNT's role in the functional dialog between human brain endothelial cells, and brain pericytes co-cultured with human astrocytes under normal conditions or after exposure to ischemia/reperfusion, a condition in which BBB breakdown occurs, and pericytes participate in the BBB repair. Using live time-lapse fluorescence microscopy and laser-scanning confocal microscopy, we found that astrocytes form long TNT with pericytes and endothelial cells and receive functional mitochondria from both cell types through this mechanism. The mitochondrial transfer also occurred in multicellular assembloids of human BBB that reproduce the three-dimensional architecture of the BBB. Under conditions of ischemia/reperfusion, TNT formation is upregulated, and astrocytes exposed to oxygen-glucose deprivation were rescued from apoptosis by healthy pericytes through TNT-mediated transfer of functional mitochondria, an effect that was virtually abolished in the presence of TNT-destroying drugs. The results establish a functional role of TNT in the crosstalk between BBB cells and demonstrate that TNT-mediated mitochondrial transfer from pericytes rescues astrocytes from ischemia/reperfusion-induced apoptosis. Our data confirm that the pericytes might play a pivotal role in preserving the structural and functional integrity of BBB under physiological conditions and participate in BBB repair in brain diseases.


Assuntos
Barreira Hematoencefálica , Pericitos , Estruturas da Membrana Celular , Células Endoteliais , Humanos , Isquemia , Nanotubos
13.
Biomater Sci ; 10(13): 3514-3526, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35603779

RESUMO

Iron oxide nanoparticles (IONPs) have been largely investigated in a plethora of biological fields for their interesting physical-chemical properties, which make them suitable for application in cancer therapy, neuroscience, and imaging. Several encouraging results have been reported in these contexts. However, the possible toxic effects of some IONP formulations can limit their applicability. In this work, IONPs were synthesized with a carbon shell (IONP@C), providing enhanced stability both as colloidal dispersion and in the biological environment. We conducted a careful multiparametric evaluation of IONP@C biological interactions in vitro, providing them with an in vivo-like biological identity. Our hybrid nanoformulation showed no cytotoxic effects on a widely employed model of alveolar epithelial cells for a variety of concentrations and exposure times. The IONP@C were efficiently internalized and TEM analysis allowed the protective role of the carbon shell against intracellular degradation to be assessed. Intracellular redistribution of the IONP@C from the lysosomes to the lamellar bodies was also observed after 72 hours.


Assuntos
Células Epiteliais Alveolares , Carbono , Células Epiteliais Alveolares/metabolismo , Carbono/farmacologia , Compostos Férricos/química , Lisossomos/metabolismo
14.
Nanoscale Horiz ; 7(3): 288-298, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35119063

RESUMO

Automatized approaches for nanoparticle synthesis and characterization represent a great asset to their applicability in the biomedical field by improving reproducibility and standardization, which help to meet the selection criteria of regulatory authorities. The scaled-up production of nanoparticles with carefully defined characteristics, including intrinsic morphological features, and minimal intra-batch, batch-to-batch, and operator variability, is an urgent requirement to elevate nanotechnology towards more trustable biological and technological applications. In this work, microfluidic approaches were employed to achieve fast mixing and good reproducibility in synthesizing a variety of gold nanostructures. The microfluidic setup allowed exploiting spatial resolution to investigate the growth evolution of the complex nanoarchitectures. By physically isolating intermediate reaction fractions, we performed an advanced characterization of the shape properties during their growth, not possible with routine characterization methods. Employing an in-house developed method to assign a specific identity to shapes, we followed the particle growth/deformation process and identified key reaction parameters for more precise control of the generated morphologies. Besides, this investigation led to the optimization of a one-pot multi-size and multi-shape synthesis of a variety of gold nanoparticles. In summary, we describe an optimized platform for highly controlled synthesis and a novel approach for the mechanistic study of shape-evolving nanomaterials.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Microfluídica , Nanoestruturas/química , Reprodutibilidade dos Testes
15.
ACS Nano ; 16(1): 1547-1559, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34958549

RESUMO

Since it is now possible to make, in a controlled fashion, an almost unlimited variety of nanostructure shapes, it is of increasing interest to understand the forms of biological control that nanoscale shape allows. However, a priori rational investigation of such a vast universe of shapes appears to present intractable fundamental and practical challenges. This has limited the useful systematic investigation of their biological interactions and the development of innovative nanoscale shape-dependent therapies. Here, we introduce a concept of biologically relevant inductive nanoscale shape discovery and evaluation that is ideally suited to, and will ultimately become, a vehicle for machine learning discovery. Combining the reproducibility and tunability of microfluidic flow nanochemistry syntheses, quantitative computational shape analysis, and iterative feedback from biological responses in vitro and in vivo, we show that these challenges can be mastered, allowing shape biology to be explored within accepted scientific and biomedical research paradigms. Early applications identify significant forms of shape-induced biological and adjuvant-like immunological control.


Assuntos
Nanoestruturas , Reprodutibilidade dos Testes , Nanoestruturas/química , Microfluídica , Aprendizado de Máquina , Imunomodulação
16.
ACS Appl Bio Mater ; 3(6): 3800-3808, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35025250

RESUMO

Ultrasmall nanoparticles are attracting an increasing interest for a variety of biomedical applications, from therapeutic targeting to imaging, in virtue of the peculiar behavior shown in vivo (i.e., efficient renal clearance, low liver accumulation, etc.). In evaluating their potential to overcome some of the challenges that larger particles have faced, it is important to understand their mechanisms of interaction with the cell membrane in relation to the biological environment and their tendency to transiently interact with biomolecules. In this work, the mechanism of cellular uptake across a range of serum concentrations is investigated using 2 nm gold nanoparticles with different surface chemistries as a model. The data suggest that despite their ultrasmall size, for these nanoparticles, internalization occurs via energy-dependent processes, and the surface chemistry could play a key role in determining the modality of the transient protein interaction, especially in conditions close to the in vivo scenario (large excess of the protein content). These aspects might be exploited to define novel targeting strategies.

17.
Front Public Health ; 8: 275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733835

RESUMO

Assessment of risk in the field of nanotechnology requires an integrated multidisciplinary approach due to the complex and cross-disciplinary framework for materials and activities at the nanoscale. The present paper summarizes the workshop "Governance of emerging nano-risk in the semiconductor industry" held on April 26, 2018 in Brussels, Belgium. The event targeted representatives of stakeholder communities involved in the risk assessment and governance of the engineered nanomaterials. Nanoelectronics was selected as an impactful use case for risk assessment approaches and comparison to bottom-up nanofabrication. The workshop outlined key data gaps impeding successful assessment of risks associated with nanoparticle use in the industry, using the semiconductor industry as an example. The workshop outlined mitigation strategies informing future regulatory decisions and identified some directions for future efforts.


Assuntos
Nanoestruturas , Nanotecnologia , Exposição Ocupacional , Semicondutores , Bélgica , Congressos como Assunto , Indústrias , Nanoestruturas/efeitos adversos
18.
Nanoscale ; 10(14): 6539-6548, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29577120

RESUMO

Despite the ground-breaking potential of nanomaterials, their safe and sustainable incorporation into an array of industrial markets prompts a deep and clear understanding of their potential toxicity for both humans and the environment. Among the many materials with great potential, graphene has shown promise in a variety of applications; however, the impact of graphene based products on living systems remains poorly understood. In this paper, we illustrate that via exploiting the tribological properties of graphene nanosheets, we can successfully improve both the frictional behaviour and the anti-wear capacity of lubricant oil for mechanical transmission. By virtue of reducing friction and enhancing lubricant lifetimes, we can forecast a reduction in friction based energy loss, in addition to a decrease in the carbon footprint of vehicles. The aforementioned positive environmental impact is further strengthened considering the lack of acute toxicity found in our extensive in vitro investigation, in which both eukaryotic and prokaryotic cells were tested. Collectively, our body of work suggests that by the use of safe nanoadditives we could contribute to reducing the environmental impact of transportation and therein take a positive step towards a more sustainable automotive sector. The workflow proposed here for the evaluation of human and environmental toxicity will allow for the study of nanosized bare graphene material and can be broadly applied to the translation of graphene-based nanomaterials into the market.


Assuntos
Grafite/toxicidade , Lubrificantes/toxicidade , Nanoestruturas/toxicidade , Células A549 , Animais , Ecotoxicologia , Fricção , Humanos , Camundongos , Óxidos , Pseudomonas putida/efeitos dos fármacos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA