Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273560

RESUMO

Soil organic carbon (SOC) plays an essential role in mediating community structure and metabolic activities of belowground biota. Unraveling the evolution of belowground communities and their feedback mechanisms on SOC dynamics helps embed the ecology of soil microbiome into carbon cycling, which serves to improve biodiversity conservation and carbon management strategy under global change. Here, croplands with a SOC gradient were used to understand how belowground metabolisms and SOC decomposition were linked to the diversity, composition, and co-occurrence networks of belowground communities encompassing archaea, bacteria, fungi, protists, and invertebrates. As SOC decreased, the diversity of prokaryotes and eukaryotes also decreased, but their network complexity showed contrasting patterns: prokaryotes increased due to intensified niche overlap, while that of eukaryotes decreased possibly because of greater dispersal limitation owing to the breakdown of macroaggregates. Despite the decrease in biodiversity and SOC stocks, the belowground metabolic capacity was enhanced as indicated by increased enzyme activity and decreased enzymatic stoichiometric imbalance. This could, in turn, expedite carbon loss through respiration, particularly in the slow-cycling pool. The enhanced belowground metabolic capacity was dominantly driven by greater multitrophic network complexity and particularly negative (competitive and predator-prey) associations, which fostered the stability of the belowground metacommunity. Interestingly, soil abiotic conditions including pH, aeration, and nutrient stocks, exhibited a less significant role. Overall, this study reveals a greater need for soil C resources across multitrophic levels to maintain metabolic functionality as declining SOC results in biodiversity loss. Our researchers highlight the importance of integrating belowground biological processes into models of SOC turnover, to improve agroecosystem functioning and carbon management in face of intensifying anthropogenic land-use and climate change.


Assuntos
Carbono , Solo , Solo/química , Biodiversidade , Bactérias , Archaea
2.
Mol Ecol ; 32(13): 3718-3732, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000121

RESUMO

Understanding how microbial communities are shaped across spatial dimensions is of fundamental importance in microbial ecology. However, most studies on soil biogeography have focused on the topsoil microbiome, while the factors driving the subsoil microbiome distribution are largely unknown. Here we used 16S rRNA amplicon sequencing to analyse the factors underlying the bacterial ß-diversity along vertical (0-240 cm of soil depth) and horizontal spatial dimensions (~500,000 km2 ) in the U.S. Corn Belt. With these data we tested whether the horizontal or vertical spatial variation had stronger impacts on the taxonomic (Bray-Curtis) and phylogenetic (weighted Unifrac) ß-diversity. Additionally, we assessed whether the distance-decay (horizontal dimension) was greater in the topsoil (0-30 cm) or subsoil (in each 30 cm layer from 30-240 cm) using Mantel tests. The influence of geographic distance versus edaphic variables on the bacterial communities from the different soil layers was also compared. Results indicated that the phylogenetic ß-diversity was impacted more by soil depth, while the taxonomic ß-diversity changed more between geographic locations. The distance-decay was lower in the topsoil than in all subsoil layers analysed. Moreover, some subsoil layers were influenced more by geographic distance than any edaphic variable, including pH. Although different factors affected the topsoil and subsoil biogeography, niche-based models explained the community assembly of all soil layers. This comprehensive study contributed to elucidating important aspects of soil bacterial biogeography including the major impact of soil depth on the phylogenetic ß-diversity, and the greater influence of geographic distance on subsoil than on topsoil bacterial communities in agroecosystems.


Assuntos
Solo , Zea mays , Zea mays/genética , Microbiologia do Solo , RNA Ribossômico 16S/genética , Filogenia
3.
Glob Chang Biol ; 28(24): 7410-7427, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36149390

RESUMO

Dissolved organic matter (DOM) plays a vital role in biogeochemical processes and in determining the responses of soil organic matter (SOM) to global change. Although the quantity of soil DOM has been inventoried across diverse spatio-temporal scales, the underlying mechanisms accounting for variability in DOM dynamics remain unclear especially in upland ecosystems. Here, a gradient of SOM storage across 12 croplands in northeast China was used to understand links between DOM dynamics, microbial metabolism, and abiotic conditions. We assessed the composition, biodegradability, and key biodegradable components of DOM. In addition, SOM and mineral-associated organic matter (MAOM) composition, soil enzyme activities, oxygen availability, soil texture, and iron (Fe), Fe-bound organic matter, and nutrient concentrations were quantified to clarify the drivers of DOM quality (composition and biodegradability). The proportion of biodegradable DOM increased exponentially with decreasing initial DOM concentration due to larger fractions of depolymerized DOM that was rich in small-molecular phenols and proteinaceous components. Unexpectedly, the composition of DOM was decoupled from that of SOM or MAOM, but significantly related to enzymatic properties. These results indicate that microbial metabolism exhibited a dominant role in DOM generation. As DOM concentration declined, increased soil oxygen availability regulated DOM composition and enhanced its biodegradability mainly through mediating microbial metabolism and Fe oxidation. The oxygen-induced oxidation of Fe(II) to Fe(III) removed complex DOM compounds with large molecular weight. Moreover, increased oxygen availability stimulated oxidase-catalyzed depolymerization of aromatic substances, and promoted production of protein-like DOM components due to lower enzymatic C/N acquisition ratio. As global changes in temperature and moisture will have large impacts on soil oxygen availability, the role of oxygen in regulating DOM dynamics highlights the importance of integrating soil oxygen supply with microbial metabolism and Fe redox status to improve model predictions of soil carbon under climate change.


Assuntos
Ferro , Solo , Solo/química , Matéria Orgânica Dissolvida , Ecossistema , Oxigênio , Oxirredução
4.
Glob Chang Biol ; 27(11): 2426-2440, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33609326

RESUMO

Increasing temperatures in the US Midwest are projected to reduce maize yields because warmer temperatures hasten reproductive development and, as a result, shorten the grain fill period. However, there is widespread expectation that farmers will mitigate projected yield losses by planting longer season hybrids that lengthen the grain fill period. Here, we ask: (a) how current hybrid maturity length relates to thermal availability of the local climate, and (b) if farmers are shifting to longer season hybrids in response to a warming climate. To address these questions, we used county-level Pioneer brand hybrid sales (Corteva Agriscience) across 17 years and 650 counties in 10 Midwest states (IA, IL, IN, MI, MN, MO, ND, OH, SD, and WI). Northern counties were shown to select hybrid maturities with growing degree day (GDD°C) requirements more closely related to the environmentally available GDD compared to central and southern counties. This measure, termed "thermal overlap," ranged from complete 106% in northern counties to a mere 63% in southern counties. The relationship between thermal overlap and latitude was fit using split-line regression and a breakpoint of 42.8°N was identified. Over the 17-years, hybrid maturities shortened across the majority of the Midwest with only a minority of counties lengthening in select northern and southern areas. The annual change in maturity ranged from -5.4 to 4.1 GDD year-1 with a median of -0.9 GDD year-1 . The shortening of hybrid maturity contrasts with widespread expectations of hybrid maturity aligning with magnitude of warming. Factors other than thermal availability appear to more strongly impact farmer decision-making such as the benefit of shorter maturity hybrids on grain drying costs, direct delivery to ethanol biorefineries, field operability, labor constraints, and crop genetics availability. Prediction of hybrid choice under future climate scenarios must include climatic factors, physiological-genetic attributes, socio-economic, and operational constraints.


Assuntos
Mudança Climática , Zea mays , Aclimatação , Agricultura , Grão Comestível
5.
Undersea Hyperb Med ; 47(3): 405-413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32931666

RESUMO

Objective: Given the high mortality and prolonged duration of mechanical ventilation of COVID-19 patients, we evaluated the safety and efficacy of hyperbaric oxygen for COVID-19 patients with respiratory distress. Methods: This is a single-center clinical trial of COVID-19 patients at NYU Winthrop Hospital from March 31 to April 28, 2020. Patients in this trial received hyperbaric oxygen therapy at 2.0 atmospheres of pressure in monoplace hyperbaric chambers for 90 minutes daily for a maximum of five total treatments. Controls were identified using propensity score matching among COVID-19 patients admitted during the same time period. Using competing-risks survival regression, we analyzed our primary outcome of inpatient mortality and secondary outcome of mechanical ventilation. Results: We treated 20 COVID-19 patients with hyperbaric oxygen. Ages ranged from 30 to 79 years with an oxygen requirement ranging from 2 to 15 liters on hospital days 0 to 14. Of these 20 patients, two (10%) were intubated and died, and none remain hospitalized. Among 60 propensity-matched controls based on age, sex, body mass index, coronary artery disease, troponin, D-dimer, hospital day, and oxygen requirement, 18 (30%) were intubated, 13 (22%) have died, and three (5%) remain hospitalized (with one still requiring mechanical ventilation). Assuming no further deaths among controls, we estimate that the adjusted subdistribution hazard ratios were 0.37 for inpatient mortality (p=0.14) and 0.26 for mechanical ventilation (p=0.046). Conclusion: Though limited by its study design, our results demonstrate the safety of hyperbaric oxygen among COVID-19 patients and strongly suggests the need for a well-designed, multicenter randomized control trial.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Oxigenoterapia Hiperbárica/métodos , Pneumonia Viral/terapia , Pontuação de Propensão , Síndrome do Desconforto Respiratório/terapia , Adulto , Idoso , Pressão Atmosférica , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/complicações , Infecções por Coronavirus/mortalidade , Feminino , Humanos , Oxigenoterapia Hiperbárica/efeitos adversos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/mortalidade , Respiração Artificial/mortalidade , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/mortalidade , Fatores de Risco , SARS-CoV-2 , Segurança , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
6.
Glob Chang Biol ; 24(1): e303-e317, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28805279

RESUMO

The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet-dry vs. dry-wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn-soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2-year sequences of extreme weather affect 2-year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951-2013), we created nine 2-year scenarios with all possible combinations of the driest ("dry"), wettest ("wet"), and average ("normal") weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal-normal 2-year weather scenario, 2-year extreme weather scenarios affected 2-year cumulative NO3- leaching (range: -93 to +290%) more than N2 O emissions (range: -49 to +18%). The 2-year weather scenarios had nonadditive effects on N losses: compared with the normal-normal scenario, the dry-wet sequence decreased 2-year cumulative N2 O emissions while the wet-dry sequence increased 2-year cumulative N2 O emissions. Although dry weather decreased NO3- leaching and N2 O emissions in isolation, 2-year cumulative N losses from the wet-dry scenario were greater than the dry-wet scenario. Cover crops reduced the effects of extreme weather on NO3- leaching but had a lesser effect on N2 O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather patterns can be used to develop short-term mitigation strategies that manipulate N fertilizer and crop rotation to maximize crop N uptake while reducing environmental N losses.


Assuntos
Ecossistema , Nitrogênio/química , Tempo (Meteorologia) , Agricultura/métodos , Simulação por Computador , Produtos Agrícolas , Fertilizantes/análise , Iowa , Modelos Teóricos , Estações do Ano , Solo
7.
Adv Skin Wound Care ; 31(9): 394-398, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30134275

RESUMO

GENERAL PURPOSE: To provide information about the diagnosis and treatment of diabetic myonecrosis (DMN).This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care.After participating in this educational activity, the participant should be better able to:1. Cite the incidence and symptomatology of diabetic myonecrosis.2. Identify the diagnostic tests associated with DMN.3. Summarize the evidence-based treatments for DMN.Diabetic myonecrosis is a rare complication of poorly controlled diabetes mellitus that presents similarly to many common conditions such as cellulitis, abscess, and fasciitis. Therefore, a high index of suspicion is required for diagnosis. Magnetic resonance imaging is the investigative test of choice. Treatment includes antiplatelet therapy, nonsteroidal anti-inflammatory agents, and glycemic control.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Capacitação em Serviço , Músculo Esquelético/patologia , Competência Clínica , Humanos , Necrose
8.
Glob Chang Biol ; 21(9): 3200-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25990618

RESUMO

Labile, 'high-quality', plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High-quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than 'low-quality' litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency-Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high-quality litters are not always stabilized in SOM with greater efficiency than low-quality litters.


Assuntos
Ciclo do Carbono , Compostos Orgânicos/química , Fenômenos Fisiológicos Vegetais , Solo/química , Ecossistema , Modelos Biológicos
9.
J Environ Qual ; 44(3): 711-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024252

RESUMO

Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time.

10.
J Environ Qual ; 44(1): 191-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602334

RESUMO

Integration of perennial filter strips (PFS) into the toeslopes of agricultural watersheds may decrease downstream nitrate (NO) losses. However, long-term NO removal depends on the relative importance of several NO sinks in the PFS. Plant biomass and labile soil organic matter (SOM) are temporary NO sinks, while stable SOM is a long-term, but potentially finite, NO sink. In contrast, denitrification is a permanent NO sink. We investigated the relative importance of these NO sinks in PFS at the toeslope of row crop watersheds in Iowa. Using 25- × 30-cm in situ mesocosms, we added NO to PFS soils and quantified NO-N recovery in plant biomass and SOM after one growing season. Further, we compared NO-N recovery in particulate (relatively labile) and mineral-associated (relatively stable) SOM in mesocosms with and without growing perennial vegetation. To determine the potential importance of denitrification, we compared denitrification enzyme activity in soils from paired watersheds with and without PFS. Transfer of NO-N into labile and stable SOM pools was rapid and initially independent of growing vegetation. However, SOM and plant biomass were both relatively minor NO sinks, accounting for <30% of NO-N inputs. Denitrification enzyme activity data indicated that dissolved organic carbon derived from perennial vegetation increased potential denitrifier activity in PFS soils compared with row crop soils. Together, these results constrain SOM and plant biomass as NO sinks and indicate that denitrification was the most important NO sink in perennial filter strips over one growing season.

11.
J Aging Phys Act ; 23(4): 559-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25594264

RESUMO

Physical activity is predictive of better cognitive performance and lower risk of Alzheimer's disease (AD). The apolipoprotein E gene (APOE) is a susceptibility gene for AD with the e4 allele being associated with a greater risk of AD. Cross-sectional and prospective research shows that physical activity is predictive of better cognitive performance for those at greater genetic risk for AD. However, the moderating role of APOE on the effects of a physical activity intervention on cognitive performance has not been examined. The purpose of this manuscript is to justify the need for such research and to describe the design, methods, and recruitment tactics used in the conductance of a study designed to provide insight as to the extent to which cognitive benefits resulting from an 8-month physical activity program are differentiated by APOE e4 status. The effectiveness of the recruitment strategies and the feasibility of recruiting APOE e4 carriers are discussed.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Apolipoproteína E4/genética , Terapia por Exercício , Atividade Motora , Projetos de Pesquisa , Idoso , Demografia , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , North Carolina , Aptidão Física/fisiologia
12.
Glob Chang Biol ; 20(4): 1339-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24395533

RESUMO

Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize-based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0-269 kg N ha(-1) yr(-1)) that created a large range in crop residue inputs (3.60-9.94 Mg dry matter ha(-1) yr(-1)), we provide the first agronomic assessment of long-term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico-chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra-aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha(-1) yr(-1)) and an excessive N rate (269 kg N ha(-1) yr(-1)), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2 O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.


Assuntos
Agricultura/métodos , Fertilizantes , Nitrogênio , Solo/química , Zea mays , Biomassa , Carbono/análise , Produtos Agrícolas , Iowa , Nitrogênio/análise , Microbiologia do Solo
13.
J Environ Qual ; 53(2): 187-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38263595

RESUMO

Increases in cereal crop yield per area have increased global food security. "Era" studies compare historical and modern crop varieties in controlled experimental settings and are routinely used to understand how advances in crop genetics and management affect crop yield. However, to date, no era study has explored how advances in maize (Zea mays L.) genetics and management (i.e., cropping systems) have affected environmental outcomes. Here, we developed a cropping systems era study in Iowa, USA, to examine how yield and nitrate losses have changed from "Old" systems common in the 1990s to "Current" systems common in the 2010s, and to "Future" systems projected to be common in the 2030s. We tested the following hypothesis: If maize yield and nitrogen use efficiency have improved over previous decades, Current and Future maize systems will have benefits to water quality compared to Old systems. We show that not only have maize yield and nitrogen use efficiency (kg grain kg-1 N), on average, improved over time but also yield-scaled nitrate load + soil nitrate was reduced by 74% and 91% from Old to Current and Future systems, respectively. Continuing these trajectories of improvement will be critical to meet the needs of a growing and more affluent population while reducing deleterious effects of agricultural systems on ecosystem services.


Assuntos
Nitratos , Zea mays , Nitratos/análise , Ecossistema , Agricultura , Solo , Grão Comestível/química , Nitrogênio/análise , Fertilizantes/análise , China
14.
Mycologia ; 105(4): 888-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23709482

RESUMO

Solioccasus polychromus gen. & sp. nov., the most brightly colored hypogeous fungus known, is described from Papua New Guinea and tropical northern Australia south into subtropical forests along the Queensland coast and coastal mountains to near Brisbane. Phylogenetic analysis of molecular data places it as a sister genus to Bothia in the Boletineae, a clade of predominantly ectomycorrhizal boletes. Ectomycorrhizal trees, such as members of the Myrtaceae (Eucalyptus, Corymbia, Lophostemon, Melaleuca spp.) and Allocasuarina littoralis, were present usually in mixture or in some cases dominant, so we infer some or all of them to be among the ectomycorrhizal hosts of S. polychromus.


Assuntos
Basidiomycota/classificação , Micorrizas/classificação , Australásia , Myrtaceae/microbiologia , Papua Nova Guiné , Filogenia
15.
Mycorrhiza ; 23(8): 663-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23666521

RESUMO

Fevansia aurantiaca is an orange-colored truffle that has been collected infrequently in the Pacific Northwest of the USA. This sequestrate, hypogeous fungus was originally thought to be related to the genera Rhizopogon or Alpova in the Boletales, but the large, inflated cells in the trama and the very pale spore mass easily segregated it from these genera. To date, no molecular phylogenetic studies have determined its closest relatives. F. aurantiaca was originally discovered in leaf litter beneath Pinaceae, leading Trappe and Castellano (Mycotaxon 75:153-179, 2000) to suggest that it is an ectomycorrhizal symbiont of various members of the Pinaceae. However, without direct ecological or phylogenetic data, it is impossible to confirm the trophic mode of this truffle species. In this study, we combined phylogenetic analysis of the ITS and 28S ribosomal DNA with data on microscopic morphology to determine that F. aurantiaca is a member of the Albatrellus ectomycorrhizal lineage (Albatrellaceae, Russulales).


Assuntos
Basidiomycota/classificação , Micorrizas/classificação , Basidiomycota/citologia , Basidiomycota/genética , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Microscopia , Dados de Sequência Molecular , Micorrizas/citologia , Micorrizas/genética , Noroeste dos Estados Unidos , Filogenia , RNA Fúngico/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
16.
Nat Commun ; 14(1): 2967, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322013

RESUMO

Much research focuses on increasing carbon storage in mineral-associated organic matter (MAOM), in which carbon may persist for centuries to millennia. However, MAOM-targeted management is insufficient because the formation pathways of persistent soil organic matter are diverse and vary with environmental conditions. Effective management must also consider particulate organic matter (POM). In many soils, there is potential for enlarging POM pools, POM can persist over long time scales, and POM can be a direct precursor of MAOM. We present a framework for context-dependent management strategies that recognizes soils as complex systems in which environmental conditions constrain POM and MAOM formation.


Assuntos
Sequestro de Carbono , Solo , Minerais , Material Particulado , Carbono
17.
Front Plant Sci ; 14: 1270166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877090

RESUMO

Nitrogen (N) limits crop production, yet more than half of N fertilizer inputs are lost to the environment. Developing maize hybrids with improved N use efficiency can help minimize N losses and in turn reduce adverse ecological, economical, and health consequences. This study aimed to identify single nucleotide polymorphisms (SNPs) associated with agronomic traits (plant height, grain yield, and anthesis to silking interval) under high and low N conditions. A genome-wide association study (GWAS) was conducted using 181 doubled haploid (DH) lines derived from crosses between landraces from the Germplasm Enhancement of Maize (BGEM lines) project and two inbreds, PHB47 and PHZ51. These DH lines were genotyped using 62,077 SNP markers. The same lines from the per se trials were used as parental lines for the testcross field trials. Plant height, anthesis to silking interval, and grain yield were collected from high and low N conditions in three environments for both per se and testcross trials. We used three GWAS models, namely, general linear model (GLM), mixed linear model (MLM), and Fixed and Random model Circulating Probability Unification (FarmCPU) model. We observed significant genetic variation among the DH lines and their derived testcrosses. Interestingly, some testcrosses of exotic introgression lines were superior under high and low N conditions compared to the check hybrid, PHB47/PHZ51. We detected multiple SNPs associated with agronomic traits under high and low N, some of which co-localized with gene models associated with stress response and N metabolism. The BGEM panel is, thus, a promising source of allelic diversity for genes controlling agronomic traits under different N conditions.

18.
Nat Commun ; 14(1): 673, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781878

RESUMO

Relevant odors signaling food, mates, or predators can be masked by unpredictable mixtures of less relevant background odors. Here, we developed a mouse behavioral paradigm to test the role played by the novelty of the background odors. During the task, mice identified target odors in previously learned background odors and were challenged by catch trials with novel background odors, a task similar to visual CAPTCHA. Female wild-type (WT) mice could accurately identify known targets in novel background odors. WT mice performance was higher than linear classifiers and the nearest neighbor classifier trained using olfactory bulb glomerular activation patterns. Performance was more consistent with an odor deconvolution method. We also used our task to investigate the performance of female Cntnap2-/- mice, which show some autism-like behaviors. Cntnap2-/- mice had glomerular activation patterns similar to WT mice and matched WT mice target detection for known background odors. However, Cntnap2-/- mice performance fell almost to chance levels in the presence of novel backgrounds. Our findings suggest that mice use a robust algorithm for detecting odors in novel environments and this computation is impaired in Cntnap2-/- mice.


Assuntos
Odorantes , Olfato , Feminino , Camundongos , Animais , Olfato/fisiologia , Bulbo Olfatório/fisiologia , Aprendizagem , Comportamento Animal/fisiologia , Proteínas de Membrana , Proteínas do Tecido Nervoso
20.
Mycologia ; 104(5): 1244-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505430

RESUMO

Elaphomyces compleximurus sp. nov. and E. digitatus sp. nov. are described from the Pakaraima Mountains of Guyana. Macromorphological, micromorphological, habitat and DNA sequence data are provided for each new species. This is the first report of Elaphomyces ascomata associated with ectomycorrhizal members of the Fabaceae and also for the genus from the lowland South American tropics.


Assuntos
Eurotiales/classificação , Micorrizas/classificação , DNA Fúngico/genética , DNA Ribossômico/genética , Ecossistema , Eurotiales/genética , Eurotiales/ultraestrutura , Guiana , Micorrizas/genética , Micorrizas/ultraestrutura , Análise de Sequência de DNA/métodos , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA