Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Environ Res ; 252(Pt 3): 118693, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537742

RESUMO

Soil nitrogen (N) transformation processes, encompassing denitrification, anaerobic ammonium oxidation (anammox), and anaerobic ammonium oxidation coupled with iron reduction (Feammox), constitute the primary mechanisms of soil dinitrogen (N2) loss. Despite the significance of these processes, there is a notable gap in research regarding the assessment of managed fertilization and irrigation impacts on anaerobic N transformations in paddy soil, crucial for achieving sustainable soil fertility management. This study addressed the gap by investigating the contributions of soil denitrification, anammox, and Feammox to N2 loss in paddy soil across varying soil depths, employing different fertilization and irrigation practices by utilizing N stable isotope technique for comprehensive insights. The results showed that anaerobic N transformation processes decreased with increasing soil depth under alternate wetting and drying (AWD) irrigation, but increased with the increasing soil depth under conventional continuous flooding (CF) irrigation. The denitrification and anammox rates varied from 0.41 to 2.12 mg N kg-1 d-1 and 0.062-0.394 mg N kg-1 d-1, respectively, which accounted for 84.3-88.1% and 11.8-15.7% of the total soil N2 loss. Significant correlations were found among denitrification rate and anammox rate (r = 0.986, p < 0.01), Fe (Ⅲ) reduction rate and denitrification rate (r = 0.527, p < 0.05), and Fe(Ⅲ) reduction rate and anammox rate (r = 0.622, p < 0.05). Moreover, nitrogen loss was more pronounced in the surface layer of the paddy soil compared to the deep layer. The study revealed that denitrification predominantly contributed to N loss in the surface soil, while Feammox emerged as a significant N loss pathway at depths ranging from 20 to 40 cm, accounting for up to 26.1% of the N loss. It was concluded that fertilization, irrigation, and soil depth significantly influenced anaerobic N transformation processes. In addition, the CF irrigation practice is best option to reduce N loss under managed fertilization. Furthermore, the role of microbial communities and their response to varying soil depths, fertilization practices, and irrigation methods could enhance our understanding on nitrogen loss pathways should be explored in future study.


Assuntos
Irrigação Agrícola , Desnitrificação , Nitrogênio , Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Irrigação Agrícola/métodos , Solo/química , Anaerobiose , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxirredução , Microbiologia do Solo , Fertilizantes/análise
2.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34870578

RESUMO

Two endophytic strains, coded MOVP5T and MOPV6, were isolated from nodules of Phaseolus vulgaris plants grown on agricultural soil in Southeastern Spain, and were characterized through a polyphasic taxonomy approach. Their 16S rRNA gene sequences showed 99.3 and 99.4 %, 98.9 and 99.6 %, and 99.0 and 98.7% similarity to 'A. deltaense' YIC 4121T, A. radiobacter LGM 140T, and A. pusense NRCPB10T, respectively. Multilocus sequence analysis based on sequences of recA and atpD genes suggested that these two strains could represent a new Agrobacterium species with less than 96.5 % similarity to their closest relatives. PCR amplification of the telA gene, involved in synthesis of protelomerase, confirmed the affiliation of strains MOPV5T and MOPV6 to the genus Agrobacterium. Whole genome average nucleotide identity and digital DNA-DNA hybridization average values were less than 95.1 and 66.7 %, respectively, with respect to its closest related species. Major fatty acids in strain MOPV5T were C18 : 1 ω7c/C18 : 1 ω6c in summed feature 8, C19 : 0 cyclo ω8c, C16 : 0 and C16 : 0 3-OH. Colonies were small to medium, pearl-white coloured on YMA at 28 °C and growth was observed at 10-42 °C, pH 5.0-10.0 and with 0.0-0.5 % (w/v) NaCl. The DNA G+C content was 59.9 mol%. These two strains differ from all other genomovars of Agrobacterium found so far, including those that have not yet given a Latin name. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strain MOPV5T as representing a novel species of Agrobacterium, for which the name Agrobacterium leguminum sp. nov. is proposed. The type strain is MOPV5T (=CECT 30096T=LMG 31779T).


Assuntos
Agrobacterium , Phaseolus , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Agrobacterium/classificação , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Phaseolus/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
3.
Arch Microbiol ; 202(7): 1929-1938, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32448966

RESUMO

In a search for identification of rhizobial strains with superior N2-fixation efficiency and improved plant agronomic characteristics upon inoculation, four strains, 4.21, 9.17, 11.2 and 14.1, isolated from root nodules of wild-grown Melilotus indicus have been used to inoculate field-grown common bean, pea, cowpea and fenugreek plants. Uninoculated plants and those inoculated with host-specific commercial inoculants were used as a control. The root length, shoot height, shoot dry weight and root dry weight and the grain yield of the plants were determined after harvest. The content of N, organic C and carbohydrates content of the grain were also recorded. The inoculation with the strains 4.21 and 14.1 increased the grain yield of the fenugreek compared both with the uninoculated plants and those inoculated with the commercial strain ARC-1. The grain yield of the common bean treated with the strains 9.17 and 14.1 was also higher than that of the uninoculated and the commercial strains ARC-301. In contrast, none of the strains increased the grain yield of the pea and cowpea plants compared to the commercial strains ARC-201 and ARC-169, respectively. Significant increases of some agronomical parameters were observed in some plant-bacterium couples, albeit nodulation was not observed. It is possible that the positive effects of rhizobial inoculation on the agronomical parameters of the non-nodule forming legumes could be due to plant growth promotion characteristic of the strains used for inoculation. Analysis of the phylogeny of the almost complete 16S rRNA sequence of the rhizobial inoculants revealed that the strains 4.21 and 9.17 clustered together with R. skierniewicense and R. rosettiformans, respectively, and that the strains 11.2 and 14.1 grouped with E. meliloti. All the four strains produced IAA, and showed biocontrol activity against Rhizotocnia solani, Fusarium oxysporum, Pythium ultimum, Alternaria alternata and Sclerotonia rolsfi, albeit to a different extent.


Assuntos
Bactérias/classificação , Clima Desértico , Fabaceae/microbiologia , Melilotus/microbiologia , Plantas/microbiologia , Microbiologia do Solo , Bactérias/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium
4.
Rapid Commun Mass Spectrom ; 33(5): 449-460, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561863

RESUMO

RATIONALE: Isotopic signatures of N2 O can help distinguish between two sources (fertiliser N or endogenous soil N) of N2 O emissions. The contribution of each source to N2 O emissions after N-application is difficult to determine. Here, isotopologue signatures of emitted N2 O are used in an improved isotopic model based on Rayleigh-type equations. METHODS: The effects of a partial (33% of surface area, treatment 1c) or total (100% of surface area, treatment 3c) dispersal of N and C on gaseous emissions from denitrification were measured in a laboratory incubation system (DENIS) allowing simultaneous measurements of NO, N2 O, N2 and CO2 over a 12-day incubation period. To determine the source of N2 O emissions those results were combined with both the isotope ratio mass spectrometry analysis of the isotopocules of emitted N2 O and those from the 15 N-tracing technique. RESULTS: The spatial dispersal of N and C significantly affected the quantity, but not the timing, of gas fluxes. Cumulative emissions are larger for treatment 3c than treatment 1c. The 15 N-enrichment analysis shows that initially ~70% of the emitted N2 O derived from the applied amendment followed by a constant decrease. The decrease in contribution of the fertiliser N-pool after an initial increase is sooner and larger for treatment 1c. The Rayleigh-type model applied to N2 O isotopocules data (δ15 Nbulk -N2 O values) shows poor agreement with the measurements for the original one-pool model for treatment 1c; the two-pool models gives better results when using a third-order polynomial equation. In contrast, in treatment 3c little difference is observed between the two modelling approaches. CONCLUSIONS: The importance of N2 O emissions from different N-pools in soil for the interpretation of N2 O isotopocules data was demonstrated using a Rayleigh-type model. Earlier statements concerning exponential increase in native soil nitrate pool activity highlighted in previous studies should be replaced with a polynomial increase with dependency on both N-pool sizes.

5.
Appl Microbiol Biotechnol ; 102(12): 5065-5076, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29713791

RESUMO

Waste treatment and the simultaneous production of energy have gained great interest in the world. In the last decades, scientific efforts have focused largely on improving and developing sustainable bioprocess solutions for energy recovery from challenging waste. Anaerobic digestion (AD) has been developed as a low-cost organic waste treatment technology with a simple setup and relatively limited investment and operating costs. Different technologies such as one-stage and two-stage AD have been developed. The viability and performance of these technologies have been extensively reported, showing the supremacy of two-stage AD in terms of overall energy recovery from biomass under different substrates, temperatures, and pH conditions. However, a comprehensive review of the advantages and disadvantages of these technologies is still lacking. Since microbial ecology is critical to developing successful AD, many studies have shown the structure and dynamics of archaeal and bacterial communities in this type of system. However, the role of Eukarya groups remains largely unknown to date. In this review, we provide a comprehensive review of the role, abundance, dynamics, and structure of archaeal, bacterial, and eukaryal communities during the AD process. The information provided could help researchers to select the adequate operational parameters to obtain the best performance and biogas production results.


Assuntos
Reatores Biológicos , Microbiologia Industrial/tendências , Eliminação de Resíduos/métodos , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Biocombustíveis , Biomassa
6.
J Basic Microbiol ; 56(1): 85-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26781208

RESUMO

Twenty one dinitrogen (N2 )-fixing bacteria were isolated from the rhizosphere of Lolium perenne grown for more than 10 years without N-fertilization. The nearly complete sequence of the 16S rRNA gene of each strain and pairwise alignments among globally aligned sequences of the 16S rRNA genes clustered them into nine different groups. Out of the 21 strains, 11 were members of genus Bacillus, 3 belonged to each one of genera Paenibacillus and Pseudoxanthomonas, and the remaining 2 strains to each one of genera Burkholderia and Staphylococcus, respectively. A representative strain from each group contained the nifH gene and fixed atmospheric N2 as determined by the acetylene-dependent ethylene production assay (acetylene reduction activity, ARA). The nine selected strains were also examined to behave as plant growth promoting bacteria (PGPRs) including their ability to act as a biocontrol agent. The nine representative strains produced indol acetic acid (IAA) and solubilized calcium triphosphate, five of them, strains C2, C3, C12, C15, and C16, had ACC deaminase activity, and strains C2, C3, C4, C12, C16, and C17 produced siderophores. Strains C13, C16, and C17 had the capability to control growth of the pathogen Fusarium oxysporum mycelial growth in vitro. PCA analysis of determined PGPR properties showed that ARA, ACC deaminase activity, and siderophore production were the most valuable as they had the maximal contribution to the total variance.


Assuntos
Lolium/microbiologia , Fixação de Nitrogênio/genética , Reguladores de Crescimento de Plantas/metabolismo , Rhizobium/isolamento & purificação , Microbiologia do Solo , Acetileno/metabolismo , Aminoácidos Cíclicos/metabolismo , Antifúngicos/farmacologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana , Sequência de Bases , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Ácidos Indolacéticos/metabolismo , Família Multigênica , Oxirredutases/genética , Filogenia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rhizobium/classificação , Rhizobium/genética , Rizosfera , Sideróforos/biossíntese
7.
J Basic Microbiol ; 55(7): 830-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25721451

RESUMO

Seventy bacterial strains were isolated from root nodules of the legume Hedysarum flexuosum grown wild in soils from Northwest Morocco. Repetitive extragenic palindromic (REP)-polymerase chain reaction (PCR) clustered the strains into 30 REP-PCR groups. The nearly complete sequence of the 16S rRNA gene from a representative strain of each REP-PCR pattern showed that 17 strains were closely related to members of the genus Rhizobium of the family Rhizobiaceae of the Alphaproteobacteria. Pairwise alignments between globally aligned sequences of the 16S rRNA gene indicated that the strains from H. flexuosum had 99.75-100% identity with Rhizobium sullae type strain IS123(T). The phenotypic characteristics analyzed allowed description of a wide physiological diversity among the isolates, where the carbohydrate assimilation test was the most discriminating. Analysis of the 16S rRNA gene of a representative strains from the remaining 13 REP-PCR groups showed they belong to a wide variety of phylogenetic groups being closely related to species of genera Stenotrophomonas, Serratia, Massilia, Acinetobacter, Achromobacter, and Pseudomonas from the Beta- and Gammaproteobacteria. The R. sullae strains identified in this study produced effective symbiosis with their original host plant. None of the other bacterial strains could form nodules on H. flexuosum.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Fabaceae/microbiologia , Fenótipo , Rhizobium/classificação , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Bactérias/genética , DNA Bacteriano , Genes de RNAr , Variação Genética , Marrocos , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Rhizobium/isolamento & purificação , Alinhamento de Sequência , Simbiose
8.
Sci Total Environ ; 919: 170659, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325480

RESUMO

Pre-plant soil fumigation is widely applied to control nematodes, soil-borne fungal pathogens, and weeds in vegetable crops. However, most of the research evaluating the effect of fumigants on crop yield and soil microbial communities has been done on single compounds despite growers mainly applying fumigant combinations. We studied the effect of different fumigant combinations (chloropicrin, 1,3-dichloropropene, and metam potassium) on soil properties, crop yield, and the soil bacterial and fungal microbiome for two consecutive years in a plastic-mulched tomato production system in Florida (United States). While combinations of fumigants did not improve plant productivity more than the individual application of these products, application of fumigants with >60 % chloropicrin did significantly increase yield. Fumigant combinations had no significant effect on bacterial diversity, but fumigants with >35 % chloropicrin reduced soil fungal diversity and induced temporary changes in the soil bacterial and fungal community composition. These changes included short-term increases in the relative abundance of Firmicutes and Ascomycota, as well as decreases in other bacterial and fungal taxa. Repeated fumigation reduced network complexity and the relative abundance of several predicted bacterial functions and fungal guilds, particularly after fumigation and at end of harvest (3-months post fumigation). A structural equation model (SEM) showed fumigants not only directly impact crop yield, but they can also indirectly determine variations in plant productivity through effects on the soil microbiome. Overall, this study increases our understanding of the environmental and agricultural impacts of fumigants in a plastic-mulched tomato production system.


Assuntos
Hidrocarbonetos Clorados , Microbiota , Praguicidas , Solanum lycopersicum , Solo/química , Praguicidas/análise , Hidrocarbonetos Clorados/química , Fumigação
9.
Bioresour Technol ; 394: 130195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081471

RESUMO

Anticancer drugs are frequently found in domestic wastewater, but knowledge of their impacts on wastewater treatment processes is limited. The effects of three levels of concentrations (low, medium, and high) of three anticancer drugs on physicochemical parameters and prokaryotic communities of a continuous-flow aerobic granular sludge (AGS) system were examined. Drugs at medium and high concentrations reduced the removal of total nitrogen and organic matter during the first 15 days of operation by approximately 15-20 % compared to a control, but these effects disappeared afterward. Removal efficiencies of drugs were in the range of 51.2-100 % depending on the concentration level. Drugs at medium and high concentrations reduced the abundance and diversity and altered the composition of prokaryotic communities. Specific taxa were linked to variations in performance parameters after the addition of the drugs. This study provides improved knowledge of the impacts of anticancer drugs in AGS systems operated in continuous-flow reactor.


Assuntos
Microbiota , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos , Reatores Biológicos , Águas Residuárias , Nitrogênio , Aerobiose
10.
J Hazard Mater ; 467: 133674, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335605

RESUMO

Increased concerns exist about the presence of anticancer drugs in wastewater. However, knowledge of the impacts of anticancer drugs on the performance of the system and microbial communities during wastewater treatment processes is limited. We examined the effect of three anticancer drugs commonly detected in influents of wastewater treatment plants applied at three different concentration levels on the performance, efficiency of anticancer drug removal, and prokaryotic microbiome in an aerobic granular sludge system (AGS) operated in a sequential batch reactor (SBR). We showed that an AGS can efficiently remove anticancer drugs, with removal rates in the range of 53-100% depending on the type of drug and concentration level. Anticancer drugs significantly decreased the abundance of total bacterial and archaeal communities, an effect that was linked to reduced nitrogen removal efficiency. Anticancer drugs also reduced the diversity, altered the prokaryotic community composition, reduced network complexity, and induced a decrease of a wide range of predicted bacterial functions. Specific bacterial taxa responsive to the addition of anticancer drugs with known roles in nitrification and denitrification were identified. This study shows anticancer drugs should be monitored in the future as they can induce changes in the performance and microbiome of wastewater treatment technologies.


Assuntos
Microbiota , Esgotos , Archaea , Águas Residuárias , Nitrificação
11.
Microbiome ; 11(1): 79, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37076924

RESUMO

BACKGROUND: While the rootstock genotype (belowground part of a plant) can impact rhizosphere microbial communities, few studies have examined the relationships between rootstock genotype-based recruitment of active rhizosphere bacterial communities and the availability of root nutrients for plant uptake. Rootstocks are developed to provide resistance to disease or tolerance of abiotic stresses, and compost application is a common practice to also control biotic and abiotic stresses in crops. In this field study, we examined: (i) the effect of four citrus rootstocks and/or compost application on the abundance, diversity, composition, and predicted functionality of active rhizosphere bacterial communities, and (ii) the relationships between active rhizosphere bacterial communities and root nutrient concentrations, with identification of bacterial taxa significantly correlated with changes in root nutrients in the rhizosphere. RESULTS: The rootstock genotype determined differences in the diversity of active rhizosphere bacterial communities and also impacted how compost altered the abundance, diversity, composition, and predicted functions of these active communities. Variations in the active bacterial rhizobiome were strongly linked to root nutrient cycling, and these interactions were root-nutrient- and rootstock-specific. Direct positive relationships between enriched taxa in treated soils and specific root nutrients were detected, and potentially important taxa for root nutrient uptake were identified. Significant differences in specific predicted functions were related to soil nutrient cycling (carbon, nitrogen, and tryptophan metabolisms) in the active bacterial rhizobiome among rootstocks, particularly in soils treated with compost. CONCLUSIONS: This study illustrates that interactions between citrus rootstocks and compost can influence active rhizosphere bacterial communities, which impact root nutrient concentrations. In particular, the response of the rhizobiome bacterial abundance, diversity, and community composition to compost was determined by the rootstock. Specific bacterial taxa therefore appear to be driving changes in root nutrient concentrations in the active rhizobiome of different citrus rootstocks. Several potential functions of active bacterial rhizobiomes recruited by different citrus rootstocks did not appear to be redundant but rather rootstock-specific. Together, these findings have important agronomic implications as they indicate the potential for agricultural production systems to maximize benefits from rhizobiomes through the choice of selected rootstocks and the application of compost. Video Abstract.


Assuntos
Citrus , Compostagem , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Solo
12.
Sci Total Environ ; 858(Pt 2): 159901, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334677

RESUMO

High-mountain lakes and rivers are usually oligotrophic and strongly influenced by atmospheric transport processes. Thus, wet deposition of reactive N species (Nr), mainly in the form of nitrate (NO3-), is a major source of N input in these high-mountain ecosystems. Bacterial denitrifiers are thought to be largely responsible for reduction of NO3- to nitrous oxide (N2O) and molecular dinitrogen (N2) as main biological pathway of N removal in these ecosystems. Nitrifiers, through the oxidation of ammonium to NO3-, can also be a source of NO3- and N2O. However, there is uncertainty regarding the abiotic and biotic factors controlling Nr elimination from aquatic ecosystems at different altitudes and seasons. We examined the efficiency of Nr removal as N2O and N2 (total removal) or N2 only (clean removal) in a model lake and its downwater river ecosystem (Sierra Nevada, Spain) representative of Mediterranean high-mountain freshwater ecosystems along an altitudinal gradient during the warm period of the year. Denitrification activity and the abundance of nitrifiers and denitrifiers in sediments were measured at thaw, mid ice-free and late ice-free periods. We found the efficiency of total and clean removal of Nr increased from the downwater river to the high-mountain lake. Regardless of the location, the efficiency of total removal of Nr decreased over the ice-free period whereas that of clean removal of Nr peaked at mid ice-free period. The efficiency of total removal of Nr was mainly controlled by the abundance of archaeal nitrifiers and bacterial denitrifiers. Abiotic (ammonium and NO3- concentration) and biotic (mainly nosZI-type denitrifiers) factors drove changes in the efficiency of clean removal of Nr. Our results suggest that abiotic and biotic factors can control the efficiencies of Nr removal in Mediterranean high-mountain lakes and their downwater rivers, and that these efficiencies increase with altitude and vary over the ice-free period.


Assuntos
Compostos de Amônio , Lagos , Lagos/microbiologia , Rios , Ecossistema , Nitrogênio , Desnitrificação , Bactérias
13.
J Hazard Mater ; 447: 130818, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680899

RESUMO

The consumption of anticancer drugs (also known as chemotherapy drugs or antineoplastic drugs) has augmented over the last decades due to increased cancer incidence. Although there is an increasing concern about the presence of pharmaceutical compounds in natural environments and urban/domestic wastewater, anticancer drugs used in chemotherapy and anticancer medication have received less attention. In this review, the occurrence, environmental persistence, and known and potential ecological impacts of anticancer drugs is discussed. This review shows that these compounds are being increasingly detected in effluents of hospitals, influents and effluents of wastewater treatment plants, river surface water and sediments, groundwater, and even drinking water. Anticancer drugs can impact aquatic organisms such as algae, crustaceans, rotifers, and fish and may promote changes in soil and water microbial communities that may alter ecosystem functioning. Our knowledge of technologies for the removal of anticancer drugs is still limited, and these drugs can be dispersed in nature in a diffuse way in an uncontrolled manner. For this reason, an improved understanding of the presence, persistence, and ecological impacts of anticancer drugs in wastewater and natural environments is needed to help design management strategies, protect aquatic microorganisms, and mitigate potential ecological impacts.


Assuntos
Antineoplásicos , Água Potável , Poluentes Químicos da Água , Animais , Águas Residuárias , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Antineoplásicos/análise
14.
Chemosphere ; 345: 140374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844701

RESUMO

Anticancer drugs are emerging contaminants that are being increasingly detected in urban wastewater. However, there is limited knowledge on the use of biological wastewater treatments, such as granular sludge systems (AGSs), to remove these substances and on their impacts on the general performance of the system and the eukaryotic communities in the granules. We investigated the impacts of three anticancer drugs commonly found in wastewater treatment plants and applied at three different concentrations on the removal efficiency of anticancer drugs, physicochemical parameters, and the eukaryotic microbiome of an AGS operated in a sequential batch reactor (SBR). Anticancer drugs applied at medium and high concentrations significantly decreased the removal efficiency of total nitrogen, the granular biomass concentration, and the size and setting velocity of granules. However, these effects disappeared after not adding the drugs for about a month thus showing the plasticity of the system to return to original levels. Regardless of the concentration of anticancer drugs tested, the AGS technology was effective in removing these substances, with removal rates in the range of 68.5%-100%. The presence of anticancer drugs at medium and high concentrations significantly decreased the abundance of total fungi, an effect that was linked to changes in the physicochemical parameters. Anticancer drugs also induced decreases in the diversity of the eukaryotic community, altered the community composition, and reduced the network complexity when applied at medium and high concentrations. Taxa responsive to the presence of anticancer drugs were identified. The diversity and composition of the eukaryotic microbiome returned to original diversity levels after not adding the drugs for about a month. Overall, this study increases our understanding of the impacts of anticancer drugs on the performance and eukaryotic microbiome of an AGS and highlights the need for monitoring these substances.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Eliminação de Resíduos Líquidos , Reatores Biológicos , Nitrogênio/análise , Aerobiose
15.
J Hazard Mater ; 427: 128149, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999405

RESUMO

Fumigants have been used for decades to control soil-borne pathogens of high-value crops, and increasing evidence indicates they can affect non-target soil microbial communities. Understanding the impacts of these products on soil microorganisms is of critical importance not only for evaluating their environmental safety, but also because soil microbial communities have a central role in soil quality and nutrient cycling, plant growth, and crop production. Thus, we conducted a systematic review and metanalysis study of fumigant impacts on non-target soil microorganisms. In general, we found that fumigation decreases the bacterial diversity and abundance of total bacteria and nitrogen-cycling genes by approximately 10-50% during the first four weeks after application compared to non-treated soils. These decreases appear transient and tend to diminish or disappear after four weeks. Increases in bacterial diversity and abundance can occur after fumigation but are less common. Fumigant application can also alter bacterial community composition during the first six weeks after treatment by significantly increasing and/or decreasing the relative abundance of bacterial taxa involved in key soil functions such as N-cycling and plant-growth promotion. Knowledge gaps and areas where future research efforts should be prioritized to improve our understanding of the impact of organic fumigants on non-target soil microorganisms are discussed.


Assuntos
Praguicidas , Solo , Fumigação , Ciclo do Nitrogênio , Praguicidas/toxicidade , Microbiologia do Solo
16.
Plants (Basel) ; 11(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432740

RESUMO

Sunnhemp (Crotalaria juncea L.) is an important legume cover crop used in tree cropping systems, where there is increased interest by growers to identify rhizobia to maximize soil nitrogen (N) inputs. We aimed to isolate and identify native rhizobia and compare their capabilities with non-native rhizobia from commercial inoculants to fix atmospheric dinitrogen (N2), produce and reduce nitrous oxide (N2O), and improve plant growth. Phylogenetic analyses of sequences of the 16S rRNA and recA, atpD, and glnII genes showed native rhizobial strains belonged to Rhizobium tropici and the non-native strain to Bradyrhizobium japonicum. Plant nodulation tests, sequencing of nodC and nifH genes, and the acetylene-dependent ethylene production assay confirmed the capacity of all strains to nodulate sunnhemp and fix N2. Inoculation with native rhizobial strains resulted in significant increases in root and shoot weight and total C and N contents in the shoots, and showed greater N2-fixation rates and lower emissions of N2O compared to the non-native rhizobium. Our results suggest that native rhizobia improve plant growth, fix N2, and reduce greenhouse emissions of sunnhemp more than commercial rhizobia inoculants in Florida citrus orchards.

17.
Sci Total Environ ; 852: 158285, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030874

RESUMO

Fumigants are commonly used to control soil-borne pathogens of high-value crops, but they may also impact non-target soil microorganisms. Increasing interest in the use of sustainable management practices to control plant- and root-parasitic nematodes has resulted in the formulation of non-fumigant nematicides (chemicals or bionematicides) which are considered environmentally friendly alternatives to fumigants. However, the impact of these new products compared to standard fumigants on soil-borne pathogens, plant production, and the diversity and composition of non-target microbial communities in all crops remains unclear. To begin to address this knowledge gap, we examined the effect of fumigants commonly used in Florida (United States) strawberry production and newly formulated non-fumigant nematicides on nematode and weed control, plant growth, crop yield, and bacterial and fungal community diversity and predicted functionality. We found the standard fumigants increased crop yields and reduced weed pressure more than non-fumigants. Both fumigants and non-fumigants were an efficient management strategy to control sting nematodes. Treatments also impacted the abundance of specific beneficial and antagonistic taxa. Both fumigants and non-fumigants reduced soil bacterial and fungal diversity, an effect that remained for six months, thus suggesting a potential residual impact of these products on soil microorganisms. However, only fumigants altered soil microbial community composition and reduced network complexity, inducing a decrease or even a loss of some predicted bacterial and fungal functions, particularly during the first weeks after fumigation. Nevertheless, soil collected at the end of the season showed significant levels of root-knot nematode suppression in a growth chamber experiment, irrespective of the previous treatment. By linking the effect of fumigants and non-fumigants on soil-borne pests, plant and production, and the soil microbiome, this study increases our knowledge regarding the environmental impact of these products.


Assuntos
Fragaria , Nematoides , Praguicidas , Animais , Solo , Microbiologia do Solo , Controle de Plantas Daninhas , Antinematódeos , Bactérias , Produtos Agrícolas
18.
Front Plant Sci ; 13: 927229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304399

RESUMO

Optimizing nitrogen (N) fertilization without sacrificing grain yield is a major concern of rice production system because most of the applied N has been depleted from the soil and creating environmental consequences. Hence, limited information is available about nutrient management (NM) performance at a specific site under alternate wetting and drying (AWD) irrigation compared to conventional permanent flooding (PF). We aimed to inquire about the performance of NM practices compared to the farmer's fertilizer practice (FFP) under PF and AWD on rhizospheric nitrifier and denitrifier abundance, rice yield, plant growth, and photosynthetic parameters. Two improved NM practices; nutrient management by pig manure (NMPM); 40% chemical N replaced by pig manure (organic N), and nutrient management by organic slow-release fertilizer (NMSR); 40% chemical N replaced by organic slow-release N were compared. The results showed an increased total grain yield (16.06%) during AWD compared to PF. Compared to conventional FFP, NMPM, and NMSR significantly increased the yields by 53.84 and 29.67%, respectively, during AWD. Meanwhile, PF prompted a yield increase of 45.07 and 28.75% for NMPM and NMSR, respectively, (p < 0.05) compared to FFP. Besides, a significant correlation was observed between grain yield and nitrogen content during AWD (R 2 = 0.58, p < 0.01), but no significant correlation was observed during PF. The NMPM contributed to photosynthetic attributes and the relative chlorophyll content under both watering events. Moreover, relatively higher abundances of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were observed during AWD, and the highest value was found after the late panicle stage. Our results suggest that the AWD-NMPM model is the best option to stimulate nitrifier and denitrifier gene abundance and promote rice production.

19.
Sci Rep ; 11(1): 10068, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980901

RESUMO

While our understanding of plant-microbe interactions in the rhizosphere microbiome (rhizobiome) has increased, there is still limited information on which taxa and functions drive these rhizobiome interactions. Focusing on the core rhizobiome (members common to two or more microbial assemblages) of crops may reduce the number of targets for determining these interactions, as they are expected to have greater influence on soil nutrient cycling and plant growth than the rest of the rhizobiome. Here, we examined whether the characterization of a core rhizobiome on the basis of only taxonomic or functional traits rather than the combined analysis of taxonomic and functional traits provides a different assessment of the core rhizobiome of agricultural crops. Sequences of the bacterial 16S rRNA gene from six globally important crops were analyzed using two different approaches in order to identify and characterize the taxonomic and functional core rhizobiome. For all crops examined, we found significant differences in the taxonomic and functional composition between the core rhizobiomes, and different phyla, genera, and predicted microbial functions were dominant depending on the core rhizobiome type. Network analysis indicated potentially important taxa were present in both taxonomic and functional core rhizobiomes. A subset of genera and predicted functions were exclusively or predominately present in only one type of core rhizobiome while others were detected in both core rhizobiomes. These results highlight the necessity of including both taxonomy and function when assessing the core rhizobiome, as this will enhance our understanding of the relationships between microbial taxa and soil health, plant growth, and agricultural sustainability.


Assuntos
Bactérias/isolamento & purificação , Produtos Agrícolas/crescimento & desenvolvimento , Microbiota , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Rizosfera , Bactérias/citologia , Bactérias/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Filogenia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
20.
Microorganisms ; 8(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110988

RESUMO

Increased concerns associated with interactions between herbicides, inorganic fertilizers, soil nutrient availability, and plant phytotoxicity in perennial tree crop production systems have renewed interest in the use of cover crops in the inter-row middles or between trees as an alternative sustainable management strategy for these systems. Although interactions between the soil microbiome and cover crops have been examined for annual cropping systems, there are critical differences in management and growth in perennial cropping systems that can influence the soil microbiome and, therefore, the response to cover crops. Here, we discuss the importance of cover crops in tree cropping systems using multispecies cover crop mixtures and minimum tillage and no-tillage to not only enhance the soil microbiome but also carbon, nitrogen, and phosphorus cycling compared to monocropping, conventional tillage, and inorganic fertilization. We also identify potentially important taxa and research gaps that need to be addressed to facilitate assessments of the relationships between cover crops, soil microbes, and the health of tree crops. Additional evaluations of the interactions between the soil microbiome, cover crops, nutrient cycling, and tree performance will allow for more effective and sustainable management of perennial cropping systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA