RESUMO
Rivers support some of Earth's richest biodiversity1 and provide essential ecosystem services to society2, but they are often fragmented by barriers to free flow3. In Europe, attempts to quantify river connectivity have been hampered by the absence of a harmonized barrier database. Here we show that there are at least 1.2 million instream barriers in 36 European countries (with a mean density of 0.74 barriers per kilometre), 68 per cent of which are structures less than two metres in height that are often overlooked. Standardized walkover surveys along 2,715 kilometres of stream length for 147 rivers indicate that existing records underestimate barrier numbers by about 61 per cent. The highest barrier densities occur in the heavily modified rivers of central Europe and the lowest barrier densities occur in the most remote, sparsely populated alpine areas. Across Europe, the main predictors of barrier density are agricultural pressure, density of river-road crossings, extent of surface water and elevation. Relatively unfragmented rivers are still found in the Balkans, the Baltic states and parts of Scandinavia and southern Europe, but these require urgent protection from proposed dam developments. Our findings could inform the implementation of the EU Biodiversity Strategy, which aims to reconnect 25,000 kilometres of Europe's rivers by 2030, but achieving this will require a paradigm shift in river restoration that recognizes the widespread impacts caused by small barriers.
Assuntos
Ecossistema , Rios , Agricultura/estatística & dados numéricos , Altitude , Biodiversidade , Conjuntos de Dados como Assunto , Recuperação e Remediação Ambiental/métodos , Recuperação e Remediação Ambiental/tendências , Europa (Continente) , Atividades Humanas , Humanos , Modelos Logísticos , Aprendizado de Máquina , Densidade Demográfica , Centrais Elétricas/provisão & distribuiçãoRESUMO
The climate resilience of river deltas is threatened by rising sea levels, accelerated land subsidence, and reduced sediment supply from contributing river basins. Yet, these uncertain and rapidly changing threats are rarely considered in conjunction. Here we provide an integrated assessment, on basin and delta scales, to identify key planning levers for increasing the climate resilience of the Mekong Delta. We find, first, that 23 to 90% of this unusually productive delta might fall below sea level by 2100, with the large uncertainty driven mainly by future management of groundwater pumping and associated land subsidence. Second, maintaining sediment supply from the basin is crucial under all scenarios for maintaining delta land and enhancing the climate resilience of the system. We then use a bottom-up approach to identify basin development scenarios that are compatible with maintaining sediment supply at current levels. This analysis highlights, third, that strategic placement of hydropower dams will be more important for maintaining sediment supply than either projected increases in sediment yields or improved sediment management at individual dams. Our results demonstrate 1) the need for integrated planning across basin and delta scales, 2) the role of river sediment management as a nature-based solution to increase delta resilience, and 3) global benefits from strategic basin management to maintain resilient deltas, especially under uncertain and changing conditions.
RESUMO
This paper presents a novel hybrid approach for the probabilistic reconstruction of meteorological fields based on the combined use of the analogue method (AM) and deep autoencoders (AEs). The AE-AM algorithm trains a deep AE in the predictor fields, which the encoder filters towards a compressed space of reduced dimensionality. The AM is then applied in this latent space to find similar situations (analogues) in the historical record, from which the target field can be reconstructed. The AE-AM is compared to the classical AM, in which flow analogues are explicitly searched in the fully resolved field of the predictor, which may contain useless information for the reconstruction. We evaluate the performance of these two approaches in reconstructing the daily maximum temperature (target) from sea-level pressure fields (predictor) recorded during eight major European heat waves of the 1950-2010 period. We show that the proposed AE-AM approach outperforms the standard AM algorithm in reconstructing the magnitude and spatial pattern of the considered heat wave events. The improvement ranges from 7% to 22% in skill score, depending on the heat wave analyzed, demonstrating the potential added value of the hybrid method.
RESUMO
Across continental Africa, more than 300 new hydropower projects are under consideration to meet the future energy demand that is expected based on the growing population and increasing energy access. Yet large uncertainties associated with hydroclimatic and socioeconomic changes challenge hydropower planning. In this work, we show that only 40 to 68% of the candidate hydropower capacity in Africa is economically attractive. By analyzing the African energy systems' development from 2020 to 2050 for different scenarios of energy demand, land-use change, and climate impacts on water availability, we find that wind and solar outcompete hydropower by 2030. An additional 1.8 to 4% increase in annual continental investment ensures reliability against future hydroclimatic variability. However, cooperation between countries is needed to overcome the divergent spatial distribution of investment costs and potential energy deficits.
RESUMO
A detailed characterization of residential water consumption is essential for ensuring urban water systems' capability to cope with changing water resources availability and water demands induced by growing population, urbanization, and climate change. Several studies have been conducted in the last decades to investigate the characteristics of residential water consumption with data at a sufficiently fine temporal resolution for grasping individual end uses of water. In this paper, we systematically review 114 studies to provide a comprehensive overview of the state-of-the-art research about water consumption at the end-use level. Specifically, we contribute with: (1) an in-depth discussion of the most relevant findings of each study, highlighting which water end-use characteristics were so far prioritized for investigation in different case studies and water demand modelling and management studies from around the world; and (2) a multi-level analysis to qualitatively and quantitatively compare the most common results available in the literature, i.e. daily per capita end-use water consumption, end-use parameter average values and statistical distributions, end-use daily profiles, end-use determinants, and considerations about efficiency and diffusion of water-saving end uses. Our findings can support water utilities, consumers, and researchers (1) in understanding which key aspects of water end uses were primarily investigated in the last decades; and (2) in exploring their main features considering different geographical, cultural, and socio-economic regions of the world.
Assuntos
Urbanização , Água , Abastecimento de Água , Recursos HídricosRESUMO
Direct policy search (DPS) is emerging as one of the most effective and widely applied reinforcement learning (RL) methods to design optimal control policies for multiobjective Markov decision processes (MOMDPs). Traditionally, DPS defines the control policy within a preselected functional class and searches its optimal parameterization with respect to a given set of objectives. The functional class should be tailored to the problem at hand and its selection is crucial, as it determines the search space within which solutions can be found. In MOMDPs problems, a different objective tradeoff determines a different fitness landscape, requiring a tradeoff-dynamic functional class selection. Yet, in state-of-the-art applications, the policy class is generally selected a priori and kept constant across the multidimensional objective space. In this work, we present a novel policy search routine called neuro-evolutionary multiobjective DPS (NEMODPS), which extends the DPS problem formulation to conjunctively search the policy functional class and its parameterization in a hyperspace containing policy architectures and coefficients. NEMODPS begins with a population of minimally structured approximating networks and progressively builds more sophisticated architectures by topological and parametrical mutation and crossover, and selection of the fittest individuals concerning multiple objectives. We tested NEMODPS for the problem of designing the control policy of a multipurpose water system. Numerical results show that the tradeoff-dynamic structural and parametrical policy search of NEMODPS is consistent across multiple runs, and outperforms the solutions designed via traditional DPS with predefined policy topologies.
RESUMO
Decades of sustainable dam planning efforts have focused on containing dam impacts in regime conditions, when the dam is fully filled and operational, overlooking potential disputes raised by the filling phase. Here, we argue that filling timing and operations can catalyze most of the conflicts associated with a dam's lifetime, which can be mitigated by adaptive solutions that respond to medium-to-long term hydroclimatic fluctuations. Our retrospective analysis of the contested recent filling of Gibe III in the Omo-Turkana basin provides quantitative evidence of the benefits generated by adaptive filling strategies, attaining levels of hydropower production comparable with the historical ones while curtailing the negative impacts to downstream users. Our results can inform a more sustainable filling of the new megadam currently under construction downstream of Gibe III, and are generalizable to the almost 500 planned dams worldwide in regions influenced by climate feedbacks, thus representing a significant scope to reduce the societal and environmental impacts of a large number of new hydropower reservoirs.
RESUMO
In state-of-the-art energy systems modelling, reservoir hydropower is represented as any other thermal power plant: energy production is constrained by the plant's installed capacity and a capacity factor calibrated on the energy produced in previous years. Natural water resource variability across different temporal scales and the subsequent filtering effect of water storage mass balances are not accounted for, leading to biased optimal power dispatch strategies. In this work, we aim at introducing a novelty in the field by advancing the representation of reservoir hydropower generation in energy systems modelling by explicitly including the most relevant hydrological constraints, such as time-dependent water availability, hydraulic head, evaporation losses, and cascade releases. This advanced characterization is implemented in an open-source energy modelling framework. The improved model is then demonstrated on the Zambezi River Basin in the South Africa Power Pool. The basin has an estimated hydropower potential of 20,000 megawatts (MW) of which about 5,000 MW has been already developed. Results show a better alignment of electricity production with observed data, with a reduction of estimated hydropower production up to 35% with respect to the baseline Calliope implementation. These improvements are useful to support hydropower management and planning capacity expansion in countries richly endowed with water resource or that are already strongly relying on hydropower for electricity production.
Assuntos
Hidrologia/métodos , Modelos Teóricos , Movimentos da Água , África Austral , Rios , África do SulRESUMO
Benefit-cost analyses of climate policies by integrated assessment models have generated conflicting assessments. Two critical issues affecting social welfare are regional heterogeneity and inequality. These have only partly been accounted for in existing frameworks. Here, we present a benefit-cost model with more than 50 regions, calibrated upon emissions and mitigation cost data from detailed-process IAMs, and featuring country-level economic damages. We compare countries' self-interested and cooperative behaviour under a range of assumptions about socioeconomic development, climate impacts, and preferences over time and inequality. Results indicate that without international cooperation, global temperature rises, though less than in commonly-used reference scenarios. Cooperation stabilizes temperature within the Paris goals (1.80∘C [1.53∘C-2.31∘C] in 2100). Nevertheless, economic inequality persists: the ratio between top and bottom income deciles is 117% higher than without climate change impacts, even for economically optimal pathways.
RESUMO
Drought risk refers to the potential losses from hazard imposed by a drought event, and it is generally characterized as a function of vulnerability, hazard, and exposure. In this study, drought risk is assessed at a national level across Africa, and the impacts of climate change, population growth, and socioeconomic vulnerabilities on drought risk are investigated. A rigorous framework is implemented to quantify drought vulnerability considering various sectors including economy, energy and infrastructure, health, land use, society, and water resources. Multi-model and multi-scenario analyses are employed to quantify drought hazard using an ensemble of 10 regional climate models and a multi-scalar drought index. Drought risk is then assessed in each country for 2 climate emission pathways (RCP4.5 and RCP8.5), 3 population scenarios, and 3 vulnerability scenarios during three future periods between 2010 and 2100. Drought risk ratio is quantified, and the role of each component (i.e. hazard, vulnerability, and exposure) is identified, and the associated uncertainties are also characterized. Results show that drought risk is expected to increase in future across Africa with varied rates for different models and scenarios. Although northern African countries indicate aggravating drought hazard, drought risk ratio is found to be highest in central African countries as a consequent of vulnerability and population rise in that region. Results indicate that if no climate change adaptation is implemented, unprecedented drought hazard and risk will occur decades earlier. In addition, controlling population growth is found to be imperative for mitigating drought risk in Africa (even more effective than climate change mitigation), as it improves socioeconomic vulnerability and reduces potential exposure to drought.
RESUMO
Two decades after the construction of the first major dam, the Mekong basin and its six riparian countries have seen rapid economic growth and development of the river system. Hydropower dams, aggregate mines, flood-control dykes, and groundwater-irrigated agriculture have all provided short-term economic benefits throughout the basin. However, it is becoming evident that anthropic changes are significantly affecting the natural functioning of the river and its floodplains. We now ask if these changes are risking major adverse impacts for the 70 million people living in the Mekong Basin. Many livelihoods in the basin depend on ecosystem services that will be strongly impacted by alterations of the sediment transport processes that drive river and delta morpho-dynamics, which underpin a sustainable future for the Mekong basin and Delta. Drawing upon ongoing and recently published research, we provide an overview of key drivers of change (hydropower development, sand mining, dyking and water infrastructures, climate change, and accelerated subsidence from pumping) for the Mekong's sediment budget, and their likely individual and cumulative impacts on the river system. Our results quantify the degree to which the Mekong delta, which receives the impacts from the entire connected river basin, is increasingly vulnerable in the face of declining sediment loads, rising seas and subsiding land. Without concerted action, it is likely that nearly half of the Delta's land surface will be below sea level by 2100, with the remaining areas impacted by salinization and frequent flooding. The threat to the Delta can be understood only in the context of processes in the entire river basin. The Mekong River case can serve to raise awareness of how the connected functions of river systems in general depend on undisturbed sediment transport, thereby informing planning for other large river basins currently embarking on rapid economic development.