RESUMO
NEW FINDINGS: What is the central question of this study? In the papillary muscle from type I diabetic rats, does diabetes-associated altered ventricular function result from changes of acto-myosin interactions and are these modifications attributable to a possible sarcomere rearrangement? What is the main finding and its importance? For the first time, we showed that type-I diabetes altered sarcomeric ultrastructure, as seen by transmission electron microscopy, consistent with physiological parameters. The diabetic condition induced slower timing parameters, which is compatible with a diastolic dysfunction. At the sarcomeric level, augmented ß-myosin heavy chain content and increased sarcomere length and crossbridges' number preserve myocardial stroke and could concur to maintain the ejection fraction. ABSTRACT: We investigated whether diabetes-associated altered ventricular function, in a type I diabetes animal model, results from a modification of acto-myosin interactions, through the in vitro recording of left papillary muscle mechanical parameters and examination of sarcomere morphology by transmission electron microscopy (TEM). Experiments were performed on streptozotocin-induced diabetic and age-matched control female Wistar rats. Mechanical isometric and isotonic indexes and timing parameters were determined. Using Huxley's equations, we calculated mechanics, kinetics and energetics of myosin crossbridges. Sarcomere length and A-band length were measured on TEM images. Type I and III collagen and ß-myosin heavy chain (MHC) expression were determined by immunoblotting. No variation in resting and developed tension or maximum extent of shortening was evident between groups, but diabetic rats showed lower maximum shortening velocity and prolonged timing parameters. Compared to controls, diabetics also displayed a higher number of crossbridges with lower unitary force. Moreover, no change in type I and III collagen was associated to diabetes, but pathological rats showed a two-fold enhancement of ß-MHC content and longer sarcomeres and A-band, detected by ultrastructural morphometry. Overall, these data address whether a preserved systolic function accompanied by an altered diastolic phase results from a recruitment of super-relaxed myosin heads or the phosphorylation of the regulatory light chain site in myosin. Although the early signs of diabetic cardiomyopathy were well expressed, the striking finding of our study was that, in diabetics, sarcomere modification may be a possible compensatory mechanism that preserves systolic function.
Assuntos
Diabetes Mellitus Experimental , Sarcômeros , Animais , Diabetes Mellitus Experimental/metabolismo , Feminino , Contração Miocárdica/fisiologia , Ratos , Ratos Wistar , Sarcômeros/metabolismo , EstreptozocinaRESUMO
The progressive predominance of rewarding effects of addictive drugs over their aversive properties likely contributes to the transition from drug use to drug dependence. By inhibiting the activity of DA neurons in the VTA, GABA projections from the rostromedial tegmental nucleus (RMTg) are well suited to shift the balance between drug-induced reward and aversion. Since cannabinoids suppress RMTg inputs to DA cells and CB1 receptors affect alcohol intake in rodents, we hypothesized that the endocannabinoid system, by modulating this pathway, might contribute to alcohol preference. Here we found that RMTg afferents onto VTA DA neurons express CB1 receptors and display a 2-arachidonoylglycerol (2-AG)-dependent form of short-term plasticity, that is, depolarization-induced suppression of inhibition (DSI). Next, we compared rodents with innate opposite alcohol preference, the Sardinian alcohol-preferring (sP) and alcohol-nonpreferring (sNP) rats. We found that DA cells from alcohol-naive sP rats displayed a decreased probability of GABA release and a larger DSI. This difference was due to the rate of 2-AG degradation. In vivo, we found a reduced RMTg-induced inhibition of putative DA neurons in sP rats that negatively correlated with an increased firing. Finally, alcohol failed to enhance RMTg spontaneous activity and to prolong RMTg-induced silencing of putative DA neurons in sP rats. Our results indicate functional modifications of RMTg projections to DA neurons that might impact the reward/aversion balance of alcohol attributes, which may contribute to the innate preference observed in sP rats and to their elevated alcohol intake.
Assuntos
Ácidos Araquidônicos/fisiologia , Comportamento Aditivo/fisiopatologia , Neurônios Dopaminérgicos/fisiologia , Endocanabinoides/fisiologia , Etanol/farmacologia , Glicerídeos/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Endogâmicos , Ácidos Araquidônicos/metabolismo , Comportamento Aditivo/induzido quimicamente , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Ratos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Ácido gama-Aminobutírico/metabolismoRESUMO
This study aimed at estimating the prevalence of osteoporosis and osteopenia in a Sardinian isolated population using hand quantitative ultrasound and at investigating the associated factors. The authors utilized a subset of data from a large population-based epidemiologic survey carried out in the Ogliastra region of Sardinia between 2003 and 2008. The sample consists of 6,326 men and women aged ≥30 years, who underwent quantitative ultrasound at the phalanges, bioelectrical impedance, anthropometric measurements, blood tests, and a standardized epidemiologic questionnaire collecting sociodemographic, lifestyle, medical, physiologic, and pharmacologic data. The T-score thresholds for amplitude-dependent speed of sound of -3.2 standard deviations and between -3.2 and -1 standard deviations were used to diagnose osteoporosis and osteopenia, respectively. Prevalence of osteoporosis was 17.0% in women and 5.2% in men. Logistic regression analysis revealed that factors associated with osteoporosis were age, anthropometric and bioimpedance measures, alkaline phosphatase levels, and menopause in women. High education, exercise, and beer consumption seem to be protective factors, whereas a family history of osteoporosis is a risk factor. Results show that osteoporosis in this population is comparable with that found in different countries, suggesting that quantitative ultrasound could be used more widely to detect high-risk individuals for preventing osteoporotic fractures.
Assuntos
Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/epidemiologia , Osteoporose/diagnóstico por imagem , Osteoporose/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antropometria , Densidade Óssea , Distribuição de Qui-Quadrado , Estudos Transversais , Impedância Elétrica , Feminino , Humanos , Itália/epidemiologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Inquéritos e Questionários , UltrassonografiaRESUMO
In this study, which supplements a recent article on the localization of statherin in human major salivary glands, we investigated the intracellular distribution of this peptide in minor salivary glands by immunogold cytochemistry at the electron microscopy level. In the lingual serous glands of von Ebner, gold particles were found in serous granules of all secreting cells, indicating that statherin is released through granule exocytosis. In buccal and labial glands, mostly composed of mucous tubuli, statherin reactivity was detected in the serous element, which represents only a small population of the glandular parenchyma. In these serous cells, however, statherin labeling was absent in secretory granules and restricted to small cytoplasmic vesicles near or partially fused with granules. Vesicle labeling could be related to the occurrence of an alternative secretory pathway for statherin in buccal and labial glands.
Assuntos
Imuno-Histoquímica , Microscopia Imunoeletrônica , Glândulas Salivares Menores/química , Proteínas e Peptídeos Salivares/análise , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glândulas Salivares Menores/citologiaRESUMO
The anticonvulsant topiramate (TPM) has been recently proposed as a novel adjuvant therapy for bipolar disorder and schizophrenia, yet its efficacy remains controversial. As both disorders are characterized by gating deficits, we tested the effects of TPM on the behavioral paradigm of prepulse inhibition (PPI) of the acoustic startle response, a validated animal model of sensorimotor gating. TPM (10, 18, 32, 58, 100 mg/kg, intraperitoneal, i.p.) enhanced PPI in rats in a dose-dependent fashion, prevented the PPI reduction mediated by the dopaminergic agonist apomorphine (0.25 mg/kg, subcutaneous, s.c.) and potentiated the effects of the antipsychotic drugs haloperidol (0.05, 0.1 mg/kg, i.p.) and clozapine (2.5, 5 mg/kg, i.p.). Conversely, TPM elicited no significant effect on the PPI disruption mediated by the NMDA receptor antagonist dizocilpine (0.05, 0.1 mg/kg, s.c.) and surprisingly antagonized the attenuation of dizocilpine-induced PPI disruption mediated by clozapine (5 mg/kg, i.p.). Our results suggest that TPM may exert diverse actions on the neural substrates of sensorimotor gating. While the pharmacological mechanisms of such effects are still elusive, our findings might contribute to shed light on some controversies on the therapeutic action of TPM, and point to this drug as a putative novel adjuvant therapy for some clusters of gating disturbances.
Assuntos
Encéfalo/efeitos dos fármacos , Frutose/análogos & derivados , Inibição Neural/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Antipsicóticos/agonistas , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Encéfalo/metabolismo , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Frutose/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Inibição Neural/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/fisiologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , TopiramatoRESUMO
Clinical evidence suggests that prenatal exposure to cannabis may be conducive to long-term neurobehavioral impairments in executive and attentional domains. Such sensorimotor alterations might be related to disorders in gating functions. Hence, the present study was undertaken to assess the effects of long-term prenatal exposure to WIN 55,212-2, a potent cannabinoid receptor agonist, on prepulse inhibition of the acoustic startle reflex, a well-validated paradigm to test sensorimotor gating. In utero exposure to WIN 55,212-2 (0.5, 1 mg/kg, from day 5 to 20 of gestation) failed to alter startle magnitude in rats in comparison with controls. Similarly, prepulse inhibition of the startle was not significantly affected by such treatment, regardless of the age when behavioral testing was carried out (40, 60 or 80 days). Interestingly, prenatal treatment with WIN 55,212-2 (0.5 mg/kg, from day 5 to 20 of gestation) induced no differences in the prepulse inhibition-disrupting effects of apomorphine (0.125, 0.25 mg/kg, s.c.) and dizocilpine (0.05, 0.1 mg/kg, s.c.), suggesting that a prenatal exposure to a cannabinoid receptor agonist is likely unable to affect sensitivity of sensorimotor gating substrates to dopaminergic agonists and NMDA receptor antagonists. Our results show that prenatal exposure to cannabis does not affect reflex reactivity to environmental stimuli, ruling out that the observed impairments in executive functions are to refer to sensorimotor gating alterations.
Assuntos
Agonistas de Receptores de Canabinoides , Morfolinas/farmacologia , Naftalenos/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Estimulação Acústica , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Animais Recém-Nascidos , Benzoxazinas , Feminino , Masculino , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Fatores de TempoRESUMO
Although substantial evidence has shown interactions between glutamatergic and dopaminergic systems play a cardinal role in the regulation of attentional processes, their involvement in informational filtering has been poorly investigated. Chiefly, little research has focused on functional correlations between the dopaminergic system and the mechanism of action of N-methyl-D-aspartate (NMDA) receptor antagonists on sensorimotor gating. The present study was targeted at evaluating whether the activation of D1 and D2 receptors is able to interact with the disruption of prepulse inhibition (PPI) of startle mediated by dizocilpine, a selective, noncompetitive NMDA receptor antagonist. We tested the effects of SKF 38393 ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol) (10 mg/kg, s.c.), a selective D1 agonist, and quinpirole (0.3, 0.6 mg/kg, s.c.), a D2 agonist, in rats, per se and in cotreatment with different doses of dizocilpine, ranging from 0.0015 to 0.15 mg/kg (s.c.). Subsequently, the effect of the D1 antagonist SCH 23390 ((R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (0.05, 0.1 mg/kg, s.c.) on PPI disruptions mediated by dizocilpine and by combination of dizocilpine and SKF 38393 was tested. Two further experiments were performed to verify whether the synergic effect of the D1 agonist with dizocilpine was counteracted by effective doses of haloperidol (0.1, 0.5 mg/kg, i.p.) and clozapine (5, 10 mg/kg, i.p.). All experiments were carried out using standard procedures for the assessment of PPI of the acoustic startle reflex. SKF 38393, while unable to impair sensorimotor gating alone, induced PPI disruption in cotreatment with 0.05 and 0.15 mg/kg of dizocilpine, both ineffective per se. Furthermore, this effect was reversed by SCH 23390, but not by haloperidol or clozapine. Conversely, no synergistic effect was exhibited between quinpirole and dizocilpine, at any given dose. These findings suggest that D1, but not D2 receptors, enhance the disruptive effect of dizocilpine on PPI.
Assuntos
Maleato de Dizocilpina/farmacologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Reflexo de Sobressalto/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Haloperidol/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacosRESUMO
BACKGROUND: Cogent evidence has shown that schizophrenia vulnerability is enhanced by psychosocial stress in adolescence, yet the underpinnings of this phenomenon remain elusive. One of the animal models that best capture the relationship between juvenile stress and schizophrenia is isolation rearing (IR). This manipulation, which consists in subjecting rats to social isolation from weaning through adulthood, results in neurobehavioral alterations akin to those observed in schizophrenia patients. In particular, IR-subjected rats display a marked reduction of the prepulse inhibition (PPI) of the startle reflex, which are posited to reflect imbalances in dopamine neurotransmission in the nucleus accumbens (NAcc). We recently documented that the key neurosteroidogenic enzyme 5α-reductase (5αR) plays an important role in the dopaminergic regulation of PPI; given that IR leads to a marked down-regulation of this enzyme in the NAcc, the present study was designed to further elucidate the functional role of 5αR in the regulation of PPI of IR-subjected rats. METHODS: We studied the impact of the prototypical 5αR inhibitor finasteride (FIN) on the PPI deficits and NAcc steroid profile of IR-subjected male rats, in comparison with socially reared (SR) controls. RESULTS: FIN (25-100 mg/kg, i.p.) dose-dependently countered IR-induced PPI reduction, without affecting gating integrity in SR rats. The NAcc and striatum of IR-subjected rats displayed several changes in neuroactive steroid profile, including a reduction in pregnenolone in both SR and IR-subjected groups, as well as a decrease in allopregnanolone content in the latter group; both effects were significantly opposed by FIN. CONCLUSIONS: These results show that 5αR inhibition counters the PPI deficits induced by IR, possibly through limbic changes in pregnenolone and/or allopregnanolone concentrations.
Assuntos
Inibidores de 5-alfa Redutase/farmacologia , Antipsicóticos/farmacologia , Finasterida/farmacologia , Inibição Pré-Pulso/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Haloperidol/farmacologia , Injeções Intraperitoneais , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Pregnenolona/metabolismo , Inibição Pré-Pulso/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Esquizofrenia/metabolismo , Isolamento Social , Estresse Psicológico/metabolismoRESUMO
Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats.
Assuntos
Encéfalo/fisiologia , Estrogênios/farmacologia , Receptor CB1 de Canabinoide/análise , Transtornos Relacionados ao Uso de Substâncias/etiologia , Animais , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Ovariectomia , Ratos , Receptor CB1 de Canabinoide/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Caracteres Sexuais , Habilidades SociaisRESUMO
Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4 × 10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (-19% and -28% for 1 mg/kg pre- and post-treated animals; -25% and -21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (-50%) and by pre-treatment with 3 mg/kg Δ9-THC (-53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (-34% and -47% for 1 mg/kg pre- and post-treated animals; -37% and -29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our results indicate that Δ9-THC reduces METH-induced brain damage via inhibition of nNOS expression and astrocyte activation through CB1-dependent and independent mechanisms, respectively.
Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Dronabinol/farmacologia , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , RatosRESUMO
The termination of serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is regulated by its uptake by the 5-HT transporter (5-HTT), as well as its degradation by monoamine oxidase (MAO)-A. MAO-A deficiency results in a wide set of behavioral alterations, including perseverative behaviors and social deficits. These anomalies are likely related to 5-HTergic homeostatic imbalances; however, the role of 5-HTT in these abnormalities remains unclear. To ascertain the role of 5-HTT in the behavioral anomalies associated to MAO-A deficiency, we tested the behavioral effects of its blocker fluoxetine on perseverative, social and aggressive behaviors in transgenic animals with hypomorphic or null-allele MAO-A mutations. Acute treatment with the 5-HTT blocker fluoxetine (10 mg/kg, i.p.) reduced aggressive behavior in MAO-A knockout (KO) mice and social deficits in hypomorphic MAO-A(Neo) mice. Furthermore, this treatment also reduced perseverative responses (including marble burying and water mist-induced grooming) in both MAO-A mutant genotypes. Both MAO-A mutant lines displayed significant reductions in 5-HTT expression across the prefrontal cortex, amygdala and striatum, as quantified by immunohistochemical detection; however, the down-regulation of 5-HTT in MAO-A(Neo) mice was more pervasive and widespread than in their KO counterparts, possibly indicating a greater ability of the hypomorphic line to enact compensatory mechanisms with respect to 5-HT homeostasis. Collectively, these findings suggest that the behavioral deficits associated with low MAO-A activity may reflect developmental alterations of 5-HTT within 5-HTergic neurons. Furthermore, the translational implications of our results highlight 5-HT reuptake inhibition as an interesting approach for the control of aggressive outbursts in MAO-A deficient individuals.
Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fluoxetina/farmacologia , Monoaminoxidase/deficiência , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Agressão/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Asseio Animal/efeitos dos fármacos , Asseio Animal/fisiologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Monoaminoxidase/genética , Comportamento Social , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologiaRESUMO
The enzyme 5α-reductase (5αR) catalyzes the conversion of testosterone and other Δ(4)-3-ketosteroids into their 5α-reduced metabolites. Of the five members of the 5αR family, the type 2 enzyme (5αR2) plays a key role in androgen metabolism, and is abundantly distributed in the urogenital system. Although 5αR2 has been reported to be highly expressed in the brain during early developmental stages, little is currently known on its anatomical and cellular distribution in the adult brain. Thus, the present study was designed to determine the detailed localization of 5αR2 in the adult rat brain, using a highly specific polyclonal antibody against this isoform. Parasagittal and coronal sections revealed 5αR2 immunoreactivity throughout most brain regions, with strong immunolabeling in the layers III and VI of the prefrontal and somatosensory cortex, olfactory bulb, thalamic nuclei, CA3 field of hippocampus, basolateral amygdala and Purkinje cell layer of cerebellum. Lower 5αR2 levels were detected in the hypothalamus and midbrain. Moreover, double labeling fluorescence with confocal laser scanning microscopy (CLSM) revealed that 5αR2 is localized in neurons, but not in glial cells. Specifically, the enzyme was documented in the pyramidal neurons of the cortex by CLSM analysis of simultaneous Golgi-Cox and immunofluorescent staining. Finally, low levels of 5αR2 expression were identified in GABAergic cells across the cortex, hippocampus and striatum. These findings show that, in the adult brain, 5αR2 is distributed in critical regions for behavioral regulation, suggesting that the functional role of this isoform is present throughout the entire lifespan of the individual.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Encéfalo/enzimologia , Imuno-Histoquímica/métodos , Animais , Neurônios GABAérgicos/enzimologia , Masculino , Imagem Molecular/métodos , Neurônios/enzimologia , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Two recently reported hit compounds, COR627 and COR628, underpinned the development of a series of 2-(acylamino)thiophene derivatives. Some of these compounds displayed significant activity in vitro as positive allosteric modulators of the GABAB receptor by potentiating GTPγS stimulation induced by GABA at 2.5 and 25 µM while failing to exhibit intrinsic agonist activity. Compounds were also found to be effective in vivo, potentiating baclofen-induced sedation/hypnosis in DBA mice when administered either intraperitoneally or intragastrically. Although displaying a lower potency in vitro than the reference compound GS39783, the new compounds 6, 10, and 11 exhibited a higher efficacy in vivo: combination of these compounds with a per se nonsedative dose of baclofen resulted in shorter onset and longer duration of the loss of righting reflex in mice. Test compounds showed cytotoxic effects at concentrations comparable to or higher than those of GS39783 or BHF177.
Assuntos
Desenho de Fármacos , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Tiofenos/síntese química , Tiofenos/farmacologia , Administração Oral , Regulação Alostérica/efeitos dos fármacos , Animais , Baclofeno/farmacologia , Técnicas de Química Sintética , Estabilidade de Medicamentos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Camundongos , Microssomos Hepáticos/metabolismo , Células NIH 3T3 , Pentobarbital/farmacologia , Ratos , Tiofenos/química , Tiofenos/metabolismoRESUMO
Oxytocin is a cyclic nonapeptide whose best known effects are stimulation of uterine smooth muscle cells during labor and of milk ejection during lactation. Circulating oxytocin originates from the hypothalamus, but its production has also been documented in peripheral tissues. Furthermore, seminal plasma also contains oxytocin, but its functional role is still unknown, although its secretion is generally ascribed to the prostate. In this study, we investigated the possibility that seminal oxytocin is also secreted by other exocrine glands of the human male genital tract. Intramural (Littrè's) glands isolated from bioptic specimens of normal urethrae were processed for immunogold localization of oxytocin. Immunostaining was detected in principal cells, with gold particles specifically found on secretory granules. Basal and endocrine cells were unstained. The present findings suggest that urethral glands not only produce the mucinous layer that protects and lubricates the urethral wall, but also are potential sources of other seminal components, such as oxytocin, which probably play still unclear roles in reproductive physiology.
Assuntos
Glândulas Exócrinas/metabolismo , Ocitocina/metabolismo , Uretra/metabolismo , Idoso , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Ocitocina/imunologiaRESUMO
It is now recognized that quantitative ultrasound (QUS) measures may predict osteoporotic fracture risk independently of bone mineral density. Although many studies have examined genetic and environmental components of bone mineral density and calcaneal QUS measures, few of them were addressed to phalangeal QUS phenotypes, and none to graphic trace parameters. This study aims to evaluate the relative contribution of genetics in the expression of phalangeal QUS traits in the adult healthy population of a Sardinian genetic isolate. Our sample includes 6056 men and women aged 30-103 years, from 43 extended pedigrees recruited in 10 villages of Ogliastra region in occasion of a large epidemiologic survey. Amplitude-dependent speed of sound (AD-SoS), fast wave amplitude (FWA), signal dynamic (SDy), bone transmission time (BTT) and ultrasound bone profile index (UBPI) were obtained from the non-dominant hand using the IGEA DBM Sonic Bone Profiler. These phenotypes were first regressed on age, anthropometric and bioimpedance measures, serum calcium, phosphorus and alkaline phosphatase, alcohol and caffeine consumption, smoking status, exercise and also months since menopause and estrogens use in women. Adjusted QUS parameters were then analyzed by univariate and bivariate variance component models to obtain heritability estimates and genetic and environmental correlations. QUS parameters were correlated to age, anthropometric and bioimpedance measures, serum phosphorus, alkaline phosphatase and to reproductive history and menopause in women. All phenotypes demonstrated substantial heritabilities ranging from 0.29+/-0.03 for SDy to 0.55+/-0.03 for FWA. Proportion of variance due to all covariates ranged from 36% for SDy to 59% for BTT. Many significant genetic and environmental correlations were found between the different QUS measures. In this study, genetic factors appear to play a relevant role in determining hand QUS measures even when taking into account various important environmental factors. Furthermore, the modest genetic correlations may imply the existence of partially unique sets of genes affecting different QUS traits, thus suggesting that QUS parameters measure different properties of bone tissue.