Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38842509

RESUMO

Peptide- and protein-based therapeutics are becoming a promising treatment regimen for myriad diseases. Toxicity of proteins is the primary hurdle for protein-based therapies. Thus, there is an urgent need for accurate in silico methods for determining toxic proteins to filter the pool of potential candidates. At the same time, it is imperative to precisely identify non-toxic proteins to expand the possibilities for protein-based biologics. To address this challenge, we proposed an ensemble framework, called VISH-Pred, comprising models built by fine-tuning ESM2 transformer models on a large, experimentally validated, curated dataset of protein and peptide toxicities. The primary steps in the VISH-Pred framework are to efficiently estimate protein toxicities taking just the protein sequence as input, employing an under sampling technique to handle the humongous class-imbalance in the data and learning representations from fine-tuned ESM2 protein language models which are then fed to machine learning techniques such as Lightgbm and XGBoost. The VISH-Pred framework is able to correctly identify both peptides/proteins with potential toxicity and non-toxic proteins, achieving a Matthews correlation coefficient of 0.737, 0.716 and 0.322 and F1-score of 0.759, 0.696 and 0.713 on three non-redundant blind tests, respectively, outperforming other methods by over $10\%$ on these quality metrics. Moreover, VISH-Pred achieved the best accuracy and area under receiver operating curve scores on these independent test sets, highlighting the robustness and generalization capability of the framework. By making VISH-Pred available as an easy-to-use web server, we expect it to serve as a valuable asset for future endeavors aimed at discerning the toxicity of peptides and enabling efficient protein-based therapeutics.


Assuntos
Proteínas , Proteínas/metabolismo , Proteínas/química , Aprendizado de Máquina , Bases de Dados de Proteínas , Biologia Computacional/métodos , Humanos , Peptídeos/toxicidade , Peptídeos/química , Simulação por Computador , Algoritmos , Software
2.
Brief Bioinform ; 22(2): 1543-1559, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33197934

RESUMO

Systems medicine (SM) has emerged as a powerful tool for studying the human body at the systems level with the aim of improving our understanding, prevention and treatment of complex diseases. Being able to automatically extract relevant features needed for a given task from high-dimensional, heterogeneous data, deep learning (DL) holds great promise in this endeavour. This review paper addresses the main developments of DL algorithms and a set of general topics where DL is decisive, namely, within the SM landscape. It discusses how DL can be applied to SM with an emphasis on the applications to predictive, preventive and precision medicine. Several key challenges have been highlighted including delivering clinical impact and improving interpretability. We used some prototypical examples to highlight the relevance and significance of the adoption of DL in SM, one of them is involving the creation of a model for personalized Parkinson's disease. The review offers valuable insights and informs the research in DL and SM.


Assuntos
Aprendizado Profundo , Análise de Sistemas , Algoritmos , Biomarcadores/metabolismo , Doença/classificação , Registros Eletrônicos de Saúde , Genômica , Humanos , Metabolômica , Redes Neurais de Computação , Medicina de Precisão/métodos , Proteômica , Transcriptoma
3.
J Cell Biochem ; 123(2): 322-346, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34729821

RESUMO

Chandipura vesiculovirus (CHPV) is a rapidly emerging pathogen responsible for causing acute encephalitis. Due to its widespread occurrence in Asian and African countries, this has become a global threat, and there is an urgent need to design an effective and nonallergenic vaccine against this pathogen. The present study aimed to develop a multi-epitope vaccine using an immunoinformatics approach. The conventional method of vaccine design involves large proteins or whole organism which leads to unnecessary antigenic load with increased chances of allergenic reactions. In addition, the process is also very time-consuming and labor-intensive. These limitations can be overcome by peptide-based vaccines comprising short immunogenic peptide fragments that can elicit highly targeted immune responses, avoiding the chances of allergenic reactions, in a relatively shorter time span. The multi-epitope vaccine constructed using CTL, HTL, and IFN-γ epitopes was able to elicit specific immune responses when exposed to the pathogen, in silico. Not only that, molecular docking and molecular dynamics simulation studies confirmed a stable interaction of the vaccine with the immune receptors. Several physicochemical analyses of the designed vaccine candidate confirmed it to be highly immunogenic and nonallergic. The computer-aided analysis performed in this study suggests that the designed multi-epitope vaccine can elicit specific immune responses and can be a potential candidate against CHPV.


Assuntos
Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vesiculovirus , Vacinas Virais , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , Infecções por Rhabdoviridae/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia , Vesiculovirus/química , Vesiculovirus/imunologia , Vacinas Virais/química , Vacinas Virais/imunologia
4.
BMC Bioinformatics ; 22(Suppl 14): 483, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772335

RESUMO

BACKGROUND: The aim of the present paper is to construct an emulator of a complex biological system simulator using a machine learning approach. More specifically, the simulator is a patient-specific model that integrates metabolic, nutritional, and lifestyle data to predict the metabolic and inflammatory processes underlying the development of type-2 diabetes in absence of familiarity. Given the very high incidence of type-2 diabetes, the implementation of this predictive model on mobile devices could provide a useful instrument to assess the risk of the disease for aware individuals. The high computational cost of the developed model, being a mixture of agent-based and ordinary differential equations and providing a dynamic multivariate output, makes the simulator executable only on powerful workstations but not on mobile devices. Hence the need to implement an emulator with a reduced computational cost that can be executed on mobile devices to provide real-time self-monitoring. RESULTS: Similarly to our previous work, we propose an emulator based on a machine learning algorithm but here we consider a different approach which turn out to have better performances, indeed in terms of root mean square error we have an improvement of two order magnitude. We tested the proposed emulator on samples containing different number of simulated trajectories, and it turned out that the fitted trajectories are able to predict with high accuracy the entire dynamics of the simulator output variables. We apply the emulator to control the level of inflammation while leveraging on the nutritional input. CONCLUSION: The proposed emulator can be implemented and executed on mobile health devices to perform quick-and-easy self-monitoring assessments.


Assuntos
Diabetes Mellitus Tipo 2 , Aprendizado de Máquina , Algoritmos , Humanos
5.
Brief Bioinform ; 20(3): 1057-1062, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29220509

RESUMO

Systems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner. This will result in follow-up white papers and open access resources to accelerate the clinical translation of systems medicine.


Assuntos
Ciência de Dados , Análise de Sistemas , Simulação por Computador , Humanos
6.
BMC Bioinformatics ; 21(Suppl 17): 508, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33308172

RESUMO

BACKGROUND: The aim of a recent research project was the investigation of the mechanisms involved in the onset of type 2 diabetes in the absence of familiarity. This has led to the development of a computational model that recapitulates the aetiology of the disease and simulates the immunological and metabolic alterations linked to type-2 diabetes subjected to clinical, physiological, and behavioural features of prototypical human individuals. RESULTS: We analysed the time course of 46,170 virtual subjects, experiencing different lifestyle conditions. We then set up a statistical model able to recapitulate the simulated outcomes. CONCLUSIONS: The resulting machine learning model adequately predicts the synthetic dataset and can, therefore, be used as a computationally-cheaper version of the detailed mathematical model, ready to be implemented on mobile devices to allow self-assessment by informed and aware individuals. The computational model used to generate the dataset of this work is available as a web-service at the following address: http://kraken.iac.rm.cnr.it/T2DM .


Assuntos
Diabetes Mellitus Tipo 2/patologia , Aprendizado de Máquina , Adulto , Idoso , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Risco , Interface Usuário-Computador , Dispositivos Eletrônicos Vestíveis
7.
BMC Bioinformatics ; 20(Suppl 6): 475, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823711

RESUMO

BACKGROUND: Neutrophils are one of the key players in the human innate immune system (HIIS). In the event of an insult where the body is exposed to inflammation triggering moieties (ITMs), neutrophils are mobilized towards the site of insult and antagonize the inflammation. If the inflammation is cleared, neutrophils go into a programmed death called apoptosis. However, if the insult is intense or persistent, neutrophils take on a violent death pathway called necrosis, which involves the rupture of their cytoplasmic content into the surrounding tissue that causes local tissue damage, thus further aggravating inflammation. This seemingly paradoxical phenomenon fuels the inflammatory process by triggering the recruitment of additional neutrophils to the site of inflammation, aimed to contribute to the complete neutralization of severe inflammation. This delicate balance between the cost and benefit of the neutrophils' choice of death pathway has been optimized during the evolution of the innate immune system. The goal of our work is to understand how the tradeoff between the cost and benefit of the different death pathways of neutrophils, in response to various levels of insults, has been optimized over evolutionary time by using the concepts of evolutionary game theory. RESULTS: We show that by using evolutionary game theory, we are able to formulate a game that predicts the percentage of necrosis and apoptosis when exposed to various levels of insults. CONCLUSION: By adopting an evolutionary perspective, we identify the driving mechanisms leading to the delicate balance between apoptosis and necrosis in neutrophils' cell death in response to different insults. Using our simple model, we verify that indeed, the global cost of remaining ITMs is the driving mechanism that reproduces the percentage of necrosis and apoptosis observed in data and neutrophils need sufficient information of the overall inflammation to be able to pick a death pathway that presumably increases the survival of the organism.


Assuntos
Apoptose/imunologia , Biologia Computacional/métodos , Necrose/imunologia , Neutrófilos/imunologia , Teoria dos Jogos , Humanos , Inflamação/imunologia
8.
PLoS Comput Biol ; 14(4): e1006073, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29698395

RESUMO

The beneficial effects of physical activity for the prevention and management of several chronic diseases are widely recognized. Mathematical modeling of the effects of physical exercise in body metabolism and in particular its influence on the control of glucose homeostasis is of primary importance in the development of eHealth monitoring devices for a personalized medicine. Nonetheless, to date only a few mathematical models have been aiming at this specific purpose. We have developed a whole-body computational model of the effects on metabolic homeostasis of a bout of physical exercise. Built upon an existing model, it allows to detail better both subjects' characteristics and physical exercise, thus determining to a greater extent the dynamics of the hormones and the metabolites considered.


Assuntos
Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Modelos Biológicos , Adulto , Glicemia/metabolismo , Biologia Computacional , Simulação por Computador , Epinefrina/sangue , Glucagon/sangue , Gluconeogênese , Glicerol/sangue , Glicogenólise , Homeostase/fisiologia , Humanos , Insulina/sangue , Masculino , Consumo de Oxigênio/fisiologia , Medicina de Precisão , Distribuição Tecidual , Adulto Jovem
9.
Brief Bioinform ; 17(3): 408-18, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25810307

RESUMO

One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases.


Assuntos
Modelos Imunológicos , Humanos
10.
Bioinformatics ; 33(19): 3065-3071, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28549079

RESUMO

MOTIVATION: A computational model equipped with the main immunological features of the sea bass (Dicentrarchus labrax L.) immune system was used to predict more effective vaccination in fish. The performance of the model was evaluated by using the results of two in vivo vaccinations trials against L. anguillarum and P. damselae. RESULTS: Tests were performed to select the appropriate doses of vaccine and infectious bacteria to set up the model. Simulation outputs were compared with the specific antibody production and the expression of BcR and TcR gene transcripts in spleen. The model has shown a good ability to be used in sea bass and could be implemented for different routes of vaccine administration even with more than two pathogens. The model confirms the suitability of in silico methods to optimize vaccine doses and the immune response to them. This model could be applied to other species to optimize the design of new vaccination treatments of fish in aquaculture. AVAILABILITY AND IMPLEMENTATION: The method is available at http://www.iac.cnr.it/∼filippo/c-immsim/. CONTACT: nromano@unitus.it. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aquicultura , Bass/imunologia , Doenças dos Peixes/imunologia , Animais , Simulação por Computador , Doenças dos Peixes/microbiologia , Sistema Imunitário/imunologia , Vacinação/veterinária
11.
Plant Cell ; 26(12): 4617-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25490918

RESUMO

We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Troca , Solanum lycopersicum/genética , Vitis/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Genes de Plantas , Genoma de Planta , Transcriptoma , Vitis/crescimento & desenvolvimento
12.
BMC Bioinformatics ; 17(Suppl 19): 506, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28155642

RESUMO

BACKGROUND: Macrophages cover a major role in the immune system, being the most plastic cell yielding several key immune functions. METHODS: Here we derived a minimalistic gene regulatory network model for the differentiation of macrophages into the two phenotypes M1 (pro-) and M2 (anti-inflammatory). RESULTS: To test the model, we simulated a large number of such networks as in a statistical ensemble. In other words, to enable the inter-cellular crosstalk required to obtain an immune activation in which the macrophage plays its role, the simulated networks are not taken in isolation but combined with other cellular agents, thus setting up a discrete minimalistic model of the immune system at the microscopic/intracellular (i.e., genetic regulation) and mesoscopic/intercellular scale. CONCLUSIONS: We show that within the mesoscopic level description of cellular interaction and cooperation, the gene regulatory logic is coherent and contributes to the overall dynamics of the ensembles that shows, statistically, the expected behaviour.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , Macrófagos/citologia , Macrófagos/metabolismo , Modelos Estatísticos , Biologia de Sistemas/métodos , Regulação da Expressão Gênica , Humanos
13.
Front Immunol ; 15: 1373738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779678

RESUMO

Introduction: While radiotherapy has long been recognized for its ability to directly ablate cancer cells through necrosis or apoptosis, radiotherapy-induced abscopal effect suggests that its impact extends beyond local tumor destruction thanks to immune response. Cellular proliferation and necrosis have been extensively studied using mathematical models that simulate tumor growth, such as Gompertz law, and the radiation effects, such as the linear-quadratic model. However, the effectiveness of radiotherapy-induced immune responses may vary among patients due to individual differences in radiation sensitivity and other factors. Methods: We present a novel macroscopic approach designed to quantitatively analyze the intricate dynamics governing the interactions among the immune system, radiotherapy, and tumor progression. Building upon previous research demonstrating the synergistic effects of radiotherapy and immunotherapy in cancer treatment, we provide a comprehensive mathematical framework for understanding the underlying mechanisms driving these interactions. Results: Our method leverages macroscopic observations and mathematical modeling to capture the overarching dynamics of this interplay, offering valuable insights for optimizing cancer treatment strategies. One shows that Gompertz law can describe therapy effects with two effective parameters. This result permits quantitative data analyses, which give useful indications for the disease progression and clinical decisions. Discussion: Through validation against diverse data sets from the literature, we demonstrate the reliability and versatility of our approach in predicting the time evolution of the disease and assessing the potential efficacy of radiotherapy-immunotherapy combinations. This further supports the promising potential of the abscopal effect, suggesting that in select cases, depending on tumor size, it may confer full efficacy to radiotherapy.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/radioterapia , Imunoterapia/métodos , Terapia Combinada , Modelos Teóricos , Radioterapia/métodos
14.
J Pers Med ; 14(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38673063

RESUMO

The field of precision radiation therapy has seen remarkable advancements in both experimental and computational methods. Recent literature has introduced various approaches such as Spatially Fractionated Radiation Therapy (SFRT). This unconventional treatment, demanding high-precision radiotherapy, has shown promising clinical outcomes. A comprehensive computational scheme for SFRT, extrapolated from a case report, is proposed. This framework exhibits exceptional flexibility, accommodating diverse initial conditions (shape, inhomogeneity, etc.) and enabling specific choices for sub-volume selection with administrated higher radiation doses. The approach integrates the standard linear quadratic model and, significantly, considers the activation of the immune system due to radiotherapy. This activation enhances the immune response in comparison to the untreated case. We delve into the distinct roles of the native immune system, immune activation by radiation, and post-radiotherapy immunotherapy, discussing their implications for either complete recovery or disease regrowth.

15.
NPJ Syst Biol Appl ; 10(1): 19, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365857

RESUMO

Medical digital twins are computational models of human biology relevant to a given medical condition, which are tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. In February 2023, an international group of experts convened for two days to discuss these challenges related to immune digital twins. The group consisted of clinicians, immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature of medical digital twin development. A video recording of the entire event is available. This paper presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different stages of progress. It also proposes a 5-year action plan for further developing this technology. The main recommendations are to identify and pursue a small number of promising use cases, to develop stimulation-specific assays of immune function in a clinical setting, and to develop a database of existing computational immune models, as well as advanced modeling technology and infrastructure.


Assuntos
Medicina de Precisão , Humanos , Bases de Dados Factuais
16.
Front Digit Health ; 6: 1349595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515550

RESUMO

A fundamental challenge for personalized medicine is to capture enough of the complexity of an individual patient to determine an optimal way to keep them healthy or restore their health. This will require personalized computational models of sufficient resolution and with enough mechanistic information to provide actionable information to the clinician. Such personalized models are increasingly referred to as medical digital twins. Digital twin technology for health applications is still in its infancy, and extensive research and development is required. This article focuses on several projects in different stages of development that can lead to specific-and practical-medical digital twins or digital twin modeling platforms. It emerged from a two-day forum on problems related to medical digital twins, particularly those involving an immune system component. Open access video recordings of the forum discussions are available.

17.
BMC Bioinformatics ; 14: 127, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23586423

RESUMO

BACKGROUND: Despite progress in conventional cancer therapies, cancer is still one of the leading causes of death in industrial nations. Therefore, an urgent need of progress in fighting cancer remains. A promising alternative to conventional methods is immune therapy. This relies on the fact that low-immunogenic tumours can be eradicated if an immune response against them is induced. Peptide vaccination is carried out by injecting tumour peptides into a patient to trigger a specific immune response against the tumour in its entirety. However, peptide vaccination is a highly complicated treatment and currently many factors like the optimal number of epitopes are not known precisely. Therefore, it is necessary to evaluate how certain parameters influence the therapy. RESULTS: We present the VaccImm Server that allows users to simulate peptide vaccination in cancer therapy. It uses an agent-based model that simulates peptide vaccination by explicitly modelling the involved cells (immune system and cancer) as well as molecules (antibodies, antigens and semiochemicals). As a new feature, our model uses real amino acid sequences to represent molecular binding sites of relevant immune cells. The model is used to generate detailed statistics of the population sizes and states of the single cell types over time. This makes the VaccImm web server well suited to examine the parameter space of peptide vaccination in silico. VaccImm is publicly available without registration on the web at http://bioinformatics.charite.de/vaccimm; all major browsers are supported. CONCLUSIONS: The VaccImm Server provides a convenient way to analyze properties of peptide vaccination in cancer therapy. Using the server, we could gain interesting insights into peptide vaccination that reveal the complex and patient-specific nature of peptide vaccination.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias/terapia , Peptídeos/imunologia , Software , Sequência de Aminoácidos , Vacinas Anticâncer/uso terapêutico , Simulação por Computador , Epitopos/química , Epitopos/imunologia , Genótipo , Humanos , Complexo Principal de Histocompatibilidade , Neoplasias/imunologia , Peptídeos/química , Carga Tumoral , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
18.
IEEE/ACM Trans Comput Biol Bioinform ; 20(2): 1009-1019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35839194

RESUMO

Drug repurposing is a highly active research area, aiming at finding novel uses for drugs that have been previously developed for other therapeutic purposes. Despite the flourishing of methodologies, success is still partial, and different approaches offer, each, peculiar advantages. In this composite landscape, we present a novel methodology focusing on an efficient mathematical procedure based on gene similarity scores and biased random walks which rely on robust drug-gene-disease association data sets. The recommendation mechanism is further unveiled by means of the Markov chain underlying the random walk process, hence providing explainability about how findings are suggested. Performances evaluation and the analysis of a case study on rheumatoid arthritis show that our approach is accurate in providing useful recommendations and is computationally efficient, compared to the state of the art of drug repurposing approaches.


Assuntos
Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Matemática , Cadeias de Markov
19.
Comput Biol Med ; 163: 107158, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37390762

RESUMO

Regular physical exercise and appropriate nutrition affect metabolic and hormonal responses and may reduce the risk of developing chronic non-communicable diseases such as high blood pressure, ischemic stroke, coronary heart disease, some types of cancer, and type 2 diabetes mellitus. Computational models describing the metabolic and hormonal changes due to the synergistic action of exercise and meal intake are, to date, scarce and mostly focussed on glucose absorption, ignoring the contribution of the other macronutrients. We here describe a model of nutrient intake, stomach emptying, and absorption of macronutrients in the gastrointestinal tract during and after the ingestion of a mixed meal, including the contribution of proteins and fats. We integrated this effort to our previous work in which we modeled the effects of a bout of physical exercise on metabolic homeostasis. We validated the computational model with reliable data from the literature. The simulations are overall physiologically consistent and helpful in describing the metabolic changes due to everyday life stimuli such as multiple mixed meals and variable periods of physical exercise over prolonged periods of time. This computational model may be used to design virtual cohorts of subjects differing in sex, age, height, weight, and fitness status, for specialized in silico challenge studies aimed at designing exercise and nutrition schemes to support health.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Homeostase , Exercício Físico/fisiologia , Insulina , Nutrientes , Simulação por Computador , Glicemia/metabolismo
20.
IBRO Neurosci Rep ; 14: 346-352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37063608

RESUMO

Background: Major Depressive Disorder (MDD) is a psychiatric illness that is often associated with potentially life-threatening physiological changes and increased risk for suicidal behavior. Electroencephalography (EEG) research suggests an association between depression and specific frequency imbalances in the frontal brain region. Further, while recently developed technology has been proposed to simplify EEG data acquisition, more research is still needed to support its use in patients with MDD. Methods: Using the 14-channel EMOTIV EPOC cap, we recorded resting state EEG from 15 MDD patients with and MDD persons with suicidal ideation (SI) vs. 12 healthy controls (HC) to investigate putative power spectral density (PSD) between-group differences at the F3 and F4 electrode sites. Specifically, we explored 1) between-group alpha power asymmetries (AA), 2) between-group differences in delta, theta, alpha and beta power, 3) between PSD data and the scores in the Beck's Depression Inventory-II (BDI-II), Beck's Anxiety Inventory (BAI), Reasons for Living Inventory (RFL), and Self-Disgust Questionnaire (SDS). Results: When compared to HC, patients had higher scores on the BAI (p = 0.0018), BDI-II (p = 0.0001) or SDS (p = 0.0142) scale and lower scores in the RFL (p = 0.0006) scale. The PSD analysis revealed no between-group difference or correlation with questionnaire scores for any of the measures considered. Conclusions: The present study could not confirm previous research suggesting frequency-specific anomalies in depressed persons with SI but might suggest that frontal EEG imbalances reflect greater anxiety and negative self-referencing. Future studies should confirm these findings in a larger population sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA