Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 60(3): 1902-1914, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471999

RESUMO

We report a detailed investigation of the coordination properties of macrocyclic lanthanide complexes containing a 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane scaffold functionalized with four acetamide pendant arms. The X-ray structures of the complexes with the large Ln3+ ions (La and Sm) display 12- and 10-coordinated metal ions, where the coordination sphere is fulfilled by the six N atoms of the macrocycle, the four O atoms of the acetamide pendants, and a bidentate nitrate anion in the La3+ complex. The analogous Yb3+ complex presents, however, a 9-coordinated metal ion because one of the acetamide pendant arms remains uncoordinated. 1H NMR studies indicate that the 10-coordinated form is present in solution throughout the lanthanide series from La to Tb, while the smaller lanthanides form 9-coordinated species. 1H and 89Y NMR studies confirm the presence of this structural change because the two species are present in solution. Analysis of the 1H chemical shifts observed for the Tb3+ complex confirms its D2 symmetry in aqueous solution and evidences a highly rhombic magnetic susceptibility tensor. The acetamide resonances of the Pr3+ and Tb3+ complexes provided sizable paraCEST effects, as demonstrated by the corresponding Z-spectra recorded at different temperatures and studies on tube phantoms recorded at 22 °C.

2.
Inorg Chem ; 55(7): 3490-7, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26977907

RESUMO

We report a complete set of magnetic susceptibilities of lanthanide complexes with a macrocyclic ligand based on a 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane platform containing four hydroxyethyl pendant arms (L(1)). The [LnL(1)](3+) complexes are isostructural along the lanthanide series from Ce(3+) to Yb(3+), with the only structural change observed along the series being the monotonous shortening of the Ln-donor distances due to lanthanide contraction. The (1)H NMR spectra point to a D2 symmetry of the [LnL(1)](3+) complexes in aqueous solution, which provides a unique opportunity for analysis of the rhombic magnetic anisotropies with an unequivocal location of the magnetic axes. The contact contributions for the observed paramagnetic shifts have been estimated with density functional theory calculations on the [GdL(1)](3+) complex. Subsequently, the pseudocontact shifts could be factored out, thereby giving access to the axial and rhombic contributions of the magnetic susceptibility tensor. Our results show that the calculated magnetic anisotropies do not follow the trends predicted by Bleaney's theory, particularly in the case of Ho(3+) and Er(3+) complexes.

3.
Chemistry ; 21(51): 18662-70, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26538320

RESUMO

We report a macrocyclic ligand based on a 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane platform containing four hydroxyethyl pendant arms (L(1)) that forms extraordinary inert complexes with Ln(3+) ions. The [EuL(1)](3+) complex does not undergo dissociation in 1 M HCl over a period of months at room temperature. Furthermore, high concentrations of phosphate and Zn(2+) ions at room temperature do not provoke metal-complex dissociation. The X-ray crystal structures of six Ln(3+) complexes reveal ten coordination of the ligand to the metal ions through the six nitrogen atoms of the macrocycle and the four oxygen atoms of the hydroxyethyl pendant arms. The analysis of the Yb(3+)- and Pr(3+)-induced paramagnetic (1)H NMR shifts show that the solid-state structures are retained in aqueous solution. The intensity of the (1)H NMR signal of bulk water can be modulated by saturation of the signals of the hydroxy protons of Pr(3+), Eu(3+), and Yb(3+) complexes following chemical-exchange saturation transfer (CEST). The ability of these complexes to provide large CEST effects at 25 and 37 °C and pH 7.4 was confirmed by using CEST magnetic resonance imaging experiments.

4.
Inorg Chem ; 54(4): 1671-83, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25615908

RESUMO

Herein we report a detailed investigation of the solid state and solution structures of lanthanide(III) complexes with the 18-membered pyridinophane ligand containing acetamide pendant arms TPPTAM (TPPTAM = 2,2',2″-(3,7,11-triaza-1,5,9(2,6)-tripyridinacyclododecaphane-3,7,11-triyl)triacetamide). The ligand crystallizes in the form of a clathrated hydrate, where the clathrated water molecule establishes hydrogen-bonding interactions with the amide NH groups and two N atoms of the macrocycle. The X-ray structures of 13 different Ln(3+) complexes obtained as the nitrate salts (Ln(3+) = La(3+)-Yb(3+), except Pm(3+)) have been determined. Additionally, the X-ray structure of the La(3+) complex obtained as the triflate salt was also obtained. In all cases the ligand provides 9-fold coordination to the Ln(3+) ion, ten coordination being completed by an oxygen atom of a coordinated water molecule or a nitrate or triflate anion. The bond distances of the metal coordination environment show a quadratic change along the lanthanide series, as expected for isostructural series of Ln(3+) complexes. Luminescence lifetime measurements obtained from solutions of the Eu(3+) and Tb(3+) complexes in H2O and D2O point to the presence of a water molecule coordinated to the metal ion in aqueous solutions. The analysis of the Ln(3+)-induced paramagnetic shifts indicates that the complexes are ten-coordinated throughout the lanthanide series from Ce(3+) to Yb(3+), and that the solution structure is very similar to the structures observed in the solid state. The complexes of the light Ln(3+) ions are fluxional due to a fast Δ(λλλλλλ) ↔ Λ(δδδδδδ) interconversion that involves the inversion of the macrocyclic ligand and the rotation of the acetamide pendant arms. The complexes of the small Ln(3+) ions are considerably more rigid, the activation free energy determined from VT (1)H NMR for the Lu(3+) complex being ΔG(⧧)298 = 72.4 ± 5.1 kJ mol(-1).

5.
Inorg Chem ; 52(10): 6062-72, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23627284

RESUMO

A detailed investigation of the solid state and solution structures of lanthanide(III) complexes with the macrocyclic ligand 2,11,20-triaza[3.3.3](2,6)pyridinophane (TPP) is reported. The solid state structures of 14 different Ln(3+) complexes have been determined using X-ray crystallography. The ligand is coordinating to the Ln(3+) ion by using its six nitrogen atoms, while nitrate or triflate anions and water molecules complete the metal coordination environments. The structure of the complexes in solution has been investigated by (1)H and (13)C NMR spectroscopy, as well as by DFT calculations (TPSSh model) performed in aqueous solution. The structures obtained from these calculations for the complexes with the lightest Ln(3+) ions (La-Sm) are in very good agreement with those determined by the analysis of the Ln(3+)-induced paramagnetic shifts. A structural change occurs across the lanthanide series at Sm(3+); the complexes of the large Ln(3+) ions (La-Nd) are chiral due to the nonplanar conformation of the macrocycle, and present effective C3v symmetries in solution as a consequence of a fast interconversion of two enantiomeric forms with C3 symmetry. The activation free energy for this enantiomerization process, as estimated by using DFT calculations, amounts to 33.0 kJ·mol(-1). The TPP ligand in the complexes of the heaviest Ln(3+) ions (Eu-Lu) presents a half-chair conformation, which results in C(s) symmetries in solution.


Assuntos
Compostos Aza/química , Hidrocarbonetos Aromáticos com Pontes/química , Elementos da Série dos Lantanídeos/química , Compostos Organometálicos/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA