RESUMO
Pediatric high-grade gliomas (pHGGs), including hemispheric pHGGs and diffuse midline gliomas (DMGs), harbor mutually exclusive tumor location-specific histone mutations. Using immunocompetent de novo mouse models of pHGGs, we demonstrated that myeloid cells were the predominant infiltrating non-neoplastic cell population. Single-cell RNA sequencing (scRNA-seq), flow cytometry, and immunohistochemistry illustrated the presence of heterogeneous myeloid cell populations shaped by histone mutations and tumor location. Disease-associated myeloid (DAM) cell phenotypes demonstrating immune permissive characteristics were identified in murine and human pHGG samples. H3.3K27M DMGs, the most aggressive DMG, demonstrated enrichment of DAMs. Genetic ablation of chemokines Ccl8 and Ccl12 resulted in a reduction of DAMs and an increase in lymphocyte infiltration, leading to increased survival of tumor-bearing mice. Pharmacologic inhibition of chemokine receptors CCR1 and CCR5 resulted in extended survival and decreased myeloid cell infiltration. This work establishes the tumor-promoting role of myeloid cells in DMG and the potential therapeutic opportunities for targeting them.
RESUMO
Gliomas are the most prevalent and devastating primary malignant brain tumors in adults. Despite substantial advances in understanding glioma biology, there have been no regulatory drug approvals in the US since bevacizumab in 2009 and tumor treating fields in 2011. Recent phase III clinical trials have failed to meet their prespecified therapeutic primary endpoints, highlighting the need for novel therapies. The poor prognosis of glioma patients, resistance to chemo-radiotherapy, and the immunosuppressive tumor microenvironment underscore the need for the development of novel therapies. Gene therapy-based immunotherapeutic strategies that couple the ability of the host immune system to specifically kill glioma cells and develop immunological memory have shown remarkable progress. Two adenoviral vectors expressing Ad-HSV1-TK/GCV and Ad-Flt3L have shown promising preclinical data, leading to FDA approval of a non-randomized, phase I open-label, first in human trial to test safety, cytotoxicity, and immune-stimulatory efficiency in high-grade glioma patients (NCT01811992). This review provides a thorough overview of immune-stimulatory gene therapy highlighting recent advancements, potential drawbacks, future directions, and recommendations for future implementation of clinical trials.
Assuntos
Neoplasias Encefálicas , Glioma , Animais , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Roedores/genética , Adenoviridae/genética , Glioma/genética , Glioma/terapia , Glioma/patologia , Terapia Genética , Timidina Quinase/genética , Vetores Genéticos/genética , Microambiente TumoralRESUMO
BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.
Assuntos
Antineoplásicos , Glioblastoma , Glioma , Adulto , Feminino , Humanos , Masculino , Quimiorradioterapia , Terapia Genética , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Adolescente , Pessoa de Meia-Idade , IdosoRESUMO
BACKGROUND: There is a growing interest in the use of digital technologies to foster learning in the health professions, along with the drive to expand teleconsultations arising from the COVID-19 pandemic. This study aims to explore whether telemedicine between levels of care can act as continuous medical education (CME) tool for general practitioners (GPs) and hospital consultants at the referral cardiology department. METHODS: This qualitative study was embedded in an organizational case study of the introduction of a new service model in the Portuguese health system. Semi-structured interviews were audio-recorded and pseudonymized. The transcribed interviews were stored, coded, and content analysis was performed in MAXQDA. RESULTS: A total of 11 physicians were interviewed. GPs and cardiologists recognized that telemedicine between levels of care could act as a CME tool. Although they departed with different expectations, telemedicine helped them collaborate as a multidisciplinary team, exchanging feedback about clinical decisions, and constructing knowledge collaboratively. Telemedicine also supplemented existing learning meetings. The consequences of technology adoption may be viewed as a result of the actors involved (including the technology itself), characteristics of the context (including the organization), and an interaction between such factors. CONCLUSION: Teleconsultations can be a learning opportunity for the health professionals involved. Our findings suggest that, in the context of the Portuguese health system, telemedicine as a CME tool helped to build multidisciplinary teams which exchanged feedback and constructed shared knowledge to improve patients' outcomes. It also helped to identify practice-changing contents to be included in face-to-face educational meetings.
Assuntos
Consulta Remota , Telemedicina , Humanos , Educação Médica Continuada , Pandemias , AprendizagemAssuntos
Glioblastoma , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Glioblastoma/terapia , Glioblastoma/imunologia , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Animais , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
Colon carcinomas comprise over two-thirds of all colorectal cancers with an overall 5-year survival rate of 64%, which rapidly decreases to 14% when the cancer becomes metastatic. Depending on the stage of colon carcinoma at diagnosis, patients can undergo surgery to attempt complete tumor resection or move directly to chemotherapy with one or a combination of drugs. As with most cancers, colon carcinomas do not always respond to chemotherapies, so targeted therapies and immunotherapies have been developed to aid chemotherapy. We report the development of a local combination therapy for colon carcinoma whereby chemo- and immunotherapeutic entities are delivered intratumorally to maximize efficacy and minimize off-target side effects. A hydrophobic chemotherapeutic agent, docetaxel (DTX), and cholesterol-modified Toll-like receptor 9 (TLR9) agonist CpG (cho-CpG) oligonucleotide are co-loaded in synthetic HDL (sHDL) nanodiscs. In vivo survival analysis of MC-38 tumor-bearing mice treated intratumorally with DTX-sHDL/CpG (median survival; MS = 43 days) showed significant improvement in overall survival compared to mice treated with single agents, free DTX (MS = 23 days, p < 0.0001) or DTX-sHDL (MS = 28 days, p < 0.0001). Two of seven mice treated with DTX-sHDL/CpG experienced complete tumor regression. None of the mice experienced any systemic toxicity as indicated by body weight maintenance and normal serum enzyme and protein levels. In summary, we have demonstrated that chemo- and immunotherapies can be co-loaded into sHDLs, delivered locally to the tumor, and can be used to improve survival outcomes significantly compared to chemotherapy alone.
Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Docetaxel/química , Lipoproteínas HDL/química , Nanopartículas/química , Oligodesoxirribonucleotídeos/química , Animais , Linhagem Celular Tumoral , Docetaxel/uso terapêutico , Feminino , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/uso terapêutico , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismoRESUMO
In this review, we discuss the molecular characteristics, development, evolution, and therapeutic perspectives for pediatric high-grade glioma (pHGG) arising in cerebral hemispheres. Recently, the understanding of biology of pHGG experienced a revolution with discoveries arising from genomic and epigenomic high-throughput profiling techniques. These findings led to identification of prevalent molecular alterations in pHGG and revealed a strong connection between epigenetic dysregulation and pHGG development. Although we are only beginning to unravel the molecular biology underlying pHGG, there is a desperate need to develop therapies that would improve the outcome of pHGG patients, as current therapies do not elicit significant improvement in median survival for this patient population. We explore the molecular and cell biology and clinical state-of-the-art of pediatric high-grade gliomas (pHGGs) arising in cerebral hemispheres. We discuss the role of driving mutations, with a special consideration of the role of epigenetic-disrupting mutations. We will also discuss the possibilities of targeting unique molecular vulnerabilities of hemispherical pHGG to design innovative tailored therapies.
Assuntos
Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Terapia de Alvo Molecular , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Glioma/genética , Glioma/patologia , Humanos , Gradação de TumoresRESUMO
We recently demonstrated that Cav1 (caveolin-1) is a negative regulator of Stat3 (signal transducer and activator of transcription-3) activity in mouse fibroblasts and human lung carcinoma SHP77 cells. We now examined whether the cellular context may affect their levels as well as the relationship between them, by assessing Cav1 and Stat3-ptyr705 amounts in different cell lines. In MDA-MB-231, A549, and HaCat cells, Cav1 levels were high and Stat3-ptyr705 levels were low, consistent with the notion of a negative effect of endogenous Cav1 on Stat3-ptyr705 levels in these lines. In addition, manipulation of Cav1 levels revealed a negative effect in MCF7 and mouse fibroblast cells, while Cav1 upregulation induced apoptosis in MCF7 cells. In contrast, however, line MRC9 had high Cav1 and high Stat3-ptyr705 levels, indicating that high Cav1 is insufficient to reduce Stat3-ptyr705 levels in this line. MCF7 and LuCi6 cells had very low Cav1 and Stat3-ptyr705 levels, indicating that the low Stat3-ptyr705 can be independent from Cav1 levels altogether. Our results reveal a further level of complexity in the relationship between Cav1 and Stat3-ptyr705 than previously thought. In addition, we demonstrate that in a feedback loop, Stat3 inhibition upregulates Cav1 in HeLa cells but not in other lines tested.
Assuntos
Neoplasias da Mama/metabolismo , Caveolina 1/metabolismo , Neoplasias Pulmonares/metabolismo , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo , Animais , Caveolina 1/antagonistas & inibidores , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Glioma cells are one of the most aggressive and malignant tumors. Following initial surgery, and radio-chemotherapy they progress rapidly, so that patients' median survival remains under two years. They invade throughout the brain, which makes them difficult to treat, and are universally lethal. Though total resection is always attempted it is not curative. Standard of care in 2016 comprises surgical resection, radiotherapy and chemotherapy (temozolomide). Median survival is currently ~14-20months post-diagnosis though it can be higher in high complexity medical university centers, or during clinical trials. Why the immune system fails to recognize the growing brain tumor is not completely understood. We believe that one reason for this failure is that the brain lacks cells that perform the role that dendritic cells serve in other organs. The lack of functional dendritic cells from the brain causes the brain to be deficient in priming systemic immune responses to glioma antigens. To overcome this drawback we reconstituted the brain immune system for it to initiate and prime anti-glioma immune responses from within the brain. To achieve brain immune reconstitution adenoviral vectors are injected into the resection cavity or remaining tumor. One adenoviral vector expresses the HSV-1 derived thymidine kinase which converts ganciclovir into phospho-ganciclovir which becomes cytotoxic to dividing cells. The second adenovirus expresses the cytokine fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L differentiates precursors into dendritic cells and acts as a chemokine for dendritic cells. This results in HSV-1/ganciclovir killing of tumor cells, and the release of tumor antigens, which are then taken up by dendritic cells recruited to the brain tumor microenvironment by Flt3L. Concomitant release of HMGB1, a TLR2 agonist that activates dendritic cells, stimulates dendritic cells loaded with glioma antigens to migrate to the cervical lymph nodes to prime a systemic CD8+ T cytotoxic killing of brain tumor cells. This induced immune response causes glioma-specific cytotoxicity, induces immunological memory, and does not cause brain toxicity or autoimmunity. A Phase I Clinical Trial, to test our hypothesis in human patients, was opened in December 2013 (see: NCT01811992, Combined Cytotoxic and Immune-Stimulatory Therapy for Glioma, at ClinicalTrials.gov). This trial is a first in human trial to test whether the re-engineering of the brain immune system can serve to treat malignant brain tumors. The long and winding road from the laboratory to the clinical trial follows below.
Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Glioma/terapia , Imunoterapia/métodos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/efeitos da radiação , Encéfalo/cirurgia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Células Dendríticas/imunologia , Tratamento Farmacológico/métodos , Glioma/genética , Glioma/imunologia , Camundongos , Análise de SobrevidaRESUMO
Various preclinical studies have demonstrated that the success of immunotherapeutic strategies in inhibiting tumor progression in animal models of Glioblastoma multiforme (GBM). It is also evident that tumor-induced immune suppression drastically impacts the efficacy of immune based therapies. Among the mechanisms employed by GBM to induce immunosuppression is the accumulation of regulatory T cells (Tregs) and Myeloid derived suppressor cells (MDSCs). Advancing our understanding about the pathways regulating the expansion, accumulation and activity of MDSCs will allow for the development of therapies aimed at abolishing the inhibitory effect of these cells on immunotherapeutic approaches. In this review, we have focused on the origin, expansion and immunosuppressive mechanisms of MDSCs in animal models and human cancer, in particular GBM.
Assuntos
Imunoterapia/métodos , Células Mieloides/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Reguladores/imunologiaRESUMO
Mouse adenovirus type 1 (MAV-1) infection causes encephalitis in susceptible strains of mice and alters the permeability of infected brains to small molecules, which indicates disruption of the blood-brain barrier (BBB). Under pathological conditions, matrix metalloproteinases (MMPs) can disrupt the BBB through their proteolytic activity on basement membrane and tight junction proteins. We examined whether MAV-1 infection alters MMP activity in vivo and in vitro Infected MAV-1-susceptible SJL mice had higher MMP2 and MMP9 activity in brains, measured by gelatin zymography, than mock-infected mice. Infected MAV-1-resistant BALB/c mice had MMP activity levels equivalent to those in mock infection. Primary SJL mouse brain endothelial cells (a target of MAV-1 in vivo) infected ex vivo with MAV-1 had no difference in activities of secreted MMP2 and MMP9 from mock cells. We show for the first time that astrocytes and microglia are also infected in vivo by MAV-1. Infected mixed primary cultures of astrocytes and microglia had higher levels of MMP2 and MMP9 activity than mock-infected cells. These results indicate that increased MMP activity in the brains of MAV-1-infected susceptible mice may be due to MMP activity produced by endothelial cells, astrocytes, and microglia, which in turn may contribute to BBB disruption and encephalitis in susceptible mice.IMPORTANCE RNA and DNA viruses can cause encephalitis; in some cases, this is accompanied by MMP-mediated disruption of the BBB. Activated MMPs degrade extracellular matrix and cleave tight-junction proteins and cytokines, modulating their functions. MAV-1 infection of susceptible mice is a tractable small-animal model for encephalitis, and the virus causes disruption of the BBB. We showed that MAV-1 infection increases enzymatic activity of two key MMPs known to be secreted and activated in neuroinflammation, MMP2 and MMP9, in brains of susceptible mice. MAV-1 infects endothelial cells, astrocytes, and microglia, cell types in the neurovascular unit that can secrete MMPs. Ex vivo MAV-1 infection of these cell types caused higher MMP activity than mock infection, suggesting that they may contribute to the higher MMP activity seen in vivo To our knowledge, this provides the first evidence of an encephalitic DNA virus in its natural host causing increased MMP activity in brains.
Assuntos
Infecções por Adenoviridae/patologia , Encefalite Viral/patologia , Mastadenovirus/patogenicidade , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 9 da Matriz/análise , Infecções por Adenoviridae/virologia , Animais , Astrócitos/enzimologia , Astrócitos/virologia , Encéfalo/patologia , Células Cultivadas , Modelos Animais de Doenças , Encefalite Viral/virologia , Células Endoteliais/enzimologia , Células Endoteliais/virologia , Camundongos , Microglia/enzimologia , Microglia/virologiaRESUMO
Survival of glioma (GBM) patients treated with the current standard of care remains dismal. Immunotherapeutic approaches that harness the cytotoxic and memory potential of the host immune system have shown great benefit in other cancers. GBMs have developed multiple strategies, including the accumulation of myeloid-derived suppressor cells (MDSCs) to induce immunosuppression. It is therefore imperative to develop multipronged approaches when aiming to generate a robust anti-tumor immune response. Herein, we tested whether combining MDSC depletion or checkpoint blockade would augment the efficacy of immune-stimulatory herpes simplex type-I thymidine kinase (TK) plus Fms-like tyrosine kinase ligand (Flt3L)-mediated immune stimulatory gene therapy. Our results show that MDSCs constitute >40% of the tumor-infiltrating immune cells. These cells express IL-4Rα, inducible nitric oxide synthase (iNOS), arginase, programmed death ligand 1 (PDL1), and CD80, molecules that are critically involved in antigen-specific T cell suppression. Depletion of MDSCs strongly enhanced the TK/Flt3L gene therapy-induced tumor-specific CD8 T cell response, which lead to increased median survival and percentage of long-term survivors. Also, combining PDL1 or CTLA-4 immune checkpoint blockade greatly improved the efficacy of TK/Flt3L gene therapy. Our results, therefore, indicate that blocking MDSC-mediated immunosuppression holds great promise for increasing the efficacy of gene therapy-mediated immunotherapies for GBM.
Assuntos
Terapia Genética , Glioma/genética , Glioma/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Animais , Antígeno B7-H1/metabolismo , Biomarcadores , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Antígeno CTLA-4/metabolismo , Células Cultivadas , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Feminino , Expressão Gênica , Terapia Genética/métodos , Glioma/patologia , Glioma/terapia , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Imunoterapia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , TransgenesRESUMO
Following antigen recognition on target cells, effector T cells establish immunological synapses and secrete cytokines. It is thought that T cells secrete cytokines in one of two modes: either synaptically (i.e., toward antigenic target cells) or multidirectionally, affecting a wider population of cells. This paradigm predicts that synaptically secreted cytokines such as IFN-γ will preferentially signal to antigenic target cells contacted by the T cell through an immunological synapse. Despite its physiological significance, this prediction has never been tested. We developed a live-cell imaging system to compare the responses of target cells and nonantigenic bystanders to IFN-γ secreted by CD8+, antigen-specific, cytotoxic T cells. Both target cells and surrounding nontarget cells respond robustly. This pattern of response was detected even at minimal antigenic T-cell stimulation using low doses of antigenic peptide, or altered peptide ligands. Although cytotoxic immunological synapses restrict killing to antigenic target cells, the effects of IFN-γ are more widespread.
Assuntos
Sinapses Imunológicas/imunologia , Interferon gama/metabolismo , Linfócitos T Citotóxicos/imunologia , Adenoviridae , Análise de Variância , Astrócitos/imunologia , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Processamento de Imagem Assistida por Computador , Interferon gama/imunologia , Microscopia/métodosRESUMO
Signal transducer and activator of transcription 3 (STAT3) has been implicated as a hub for multiple oncogenic pathways. The constitutive activation of STAT3 is present in several cancers, including gliomas (GBMs), and is associated with poor therapeutic responses. Phosphorylation of STAT3 triggers its dimerization and nuclear transport, where it promotes the transcription of genes that stimulate tumor growth. In light of this role, inhibitors of the STAT3 pathway are attractive therapeutic targets for cancer. To this end, we evaluated the STAT3-inhibitory activities of three compounds (CPA-7 [trichloronitritodiammineplatinum(IV)], WP1066 [(S,E)-3-(6-bromopyridin-2-yl)-2-cyano-N-(1-phenylethyl)acrylamide, C17H14BrN3O], and ML116 [4-benzyl-1-{thieno[2,3-d]pyrimidin-4-yl}piperidine, C18H19N3S]) in cultured rodent and human glioma cells, including GBM cancer stem cells. Our results demonstrate a potent induction of growth arrest in GBM cells after drug treatment with a concomitant induction of cell death. Although these compounds were effective at inhibiting STAT3 phosphorylation, they also displayed variable dose-dependent inhibition of STAT1, STAT5, and nuclear factor κ light-chain enhancer of activated B cells. The therapeutic efficacy of these compounds was further evaluated in peripheral and intracranial mouse tumor models. Whereas CPA-7 elicited regression of peripheral tumors, both melanoma and GBM, its efficacy was not evident when the tumors were implanted within the brain. Our data suggest poor permeability of this compound to tumors located within the central nervous system. WP1066 and ML116 exhibited poor in vivo efficacy. In summary, CPA-7 constitutes a powerful anticancer agent in models of peripheral solid cancers. Our data strongly support further development of CPA-7-derived compounds with increased permeability to enhance their efficacy in primary and metastatic brain tumors.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/secundário , Fator de Transcrição STAT3/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos Clorados/farmacocinética , Compostos Clorados/farmacologia , Compostos Clorados/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Compostos Heterocíclicos com 2 Anéis/farmacocinética , Compostos Heterocíclicos com 2 Anéis/farmacologia , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Piperidinas/farmacocinética , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Compostos de Platina/farmacocinética , Compostos de Platina/farmacologia , Compostos de Platina/uso terapêutico , Piridinas/farmacocinética , Piridinas/farmacologia , Piridinas/uso terapêutico , Fator de Transcrição STAT3/genética , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Distribuição Tecidual , Tirfostinas/farmacocinética , Tirfostinas/farmacologia , Tirfostinas/uso terapêuticoRESUMO
Originally devised for cancer control, mRNA vaccines have risen to the forefront of medicine as effective instruments for control of infectious disease, notably their pivotal role in combating the COVID-19 pandemic. This review focuses on fundamental aspects of the development of mRNA vaccines, e.g., tumor antigens, vector design, and precise delivery methodologies, - highlighting key technological advances. The recent, promising success of personalized mRNA vaccines against pancreatic cancer and melanoma illustrates the potential value for other intractable, immunologically resistant, solid tumors, such as glioblastoma, as well as the potential for synergies with a combinatorial, immunotherapeutic approach. The impact and progress in human cancer, including pancreatic cancer, head and neck cancer, bladder cancer are reviewed, as are lessons learned from first-in-human CAR-T cell, DNA and dendritic cell vaccines targeting glioblastoma. Going forward, a roadmap is provided for the transformative potential of mRNA vaccines to advance cancer immunotherapy, with a particular focus on the opportunities and challenges of glioblastoma. The current landscape of glioblastoma immunotherapy and gene therapy is reviewed with an eye to combinatorial approaches harnessing RNA science. Preliminary preclinical and clinical data supports the concept that mRNA vaccines could be a viable, novel approach to prolong survival in patients with glioblastoma.
RESUMO
Brain tumors in children and adults differ greatly in patient outcomes and responses to radiotherapy and chemotherapy. Moreover, the prevalence of recurrent mutations in histones and chromatin regulatory proteins in pediatric and young adult gliomas suggests that the chromatin landscape is rewired to support oncogenic programs. These early somatic mutations dysregulate widespread genomic loci by altering the distribution of histone post-translational modifications (PTMs) and, in consequence, causing changes in chromatin accessibility and in the histone code, leading to gene transcriptional changes. We review how distinct chromatin imbalances in glioma subtypes impact on oncogenic features such as cellular fate, proliferation, immune landscape, and radio resistance. Understanding these mechanisms of epigenetic dysregulation carries substantial implications for advancing targeted epigenetic therapies.
RESUMO
The majority of primary brain tumors are gliomas, among which glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. GBM has a median survival of 18-24 months, and despite extensive research it remains incurable, thus novel therapies are urgently needed. The current standard of care is a combination of surgery, radiation, and chemotherapy, but still remains ineffective due to the invasive nature and high recurrence of gliomas. Gene therapy is a versatile treatment strategy investigated for multiple tumor types including GBM. In gene therapy, a variety of vectors are employed to deliver genes designed for different antitumoral effects. Also, over the past decades, stem cell biology has provided a new approach to cancer therapies. Stem cells can be used as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. Stem cell-based therapy allows targeted therapy that spares healthy brain tissue as well as establishes a long-term antitumor response by stimulating the immune system and delivering prodrug, metabolizing genes, or even oncolytic viruses. This chapter describes the latest developments and the current trends in gene and cell-based therapy against GBM from both preclinical and clinical perspectives, including different gene therapy delivery systems, molecular targets, and stem cell therapies.
Assuntos
Neoplasias Encefálicas , Terapia Genética , Humanos , Terapia Genética/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Glioblastoma/terapia , Glioblastoma/genética , Neurologia/métodos , Neurologia/tendênciasRESUMO
Glioblastoma (GBM) remains a challenge in Neuro-oncology, with a poor prognosis showing only a 5% survival rate beyond two years. This is primarily due to its aggressiveness and intra-tumoral heterogeneity, which limits complete surgical resection and reduces the efficacy of existing treatments. The existence of oncostreams-neuropathological structures comprising aligned spindle-like cells from both tumor and non-tumor origins- is discovered earlier. Oncostreams are closely linked to glioma aggressiveness and facilitate the spread into adjacent healthy brain tissue. A unique molecular signature intrinsic to oncostreams, with overexpression of key genes (i.e., COL1A1, ACTA2) that drive the tumor's mesenchymal transition and malignancy is also identified. Pre-clinical studies on genetically engineered mouse models demonstrated that COL1A1 inhibition disrupts oncostreams, modifies TME, reduces mesenchymal gene expression, and extends survival. An in vitro model using GFP+ NPA cells to investigate how various treatments affect oncostream dynamics is developed. Analysis showed that factors such as cell density, morphology, neurotransmitter agonists, calcium chelators, and cytoskeleton-targeting drugs influence oncostream formation. This data illuminate the patterns of glioma migration and suggest anti-invasion strategies that can improve GBM patient outcomes when combined with traditional therapies. This work highlights the potential of targeting oncostreams to control glioma invasion and enhance treatment efficacy.
Assuntos
Neoplasias Encefálicas , Glioma , Camundongos , Animais , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismoRESUMO
Histone deacetylases (HDACs) have a wide range of targets and can rewire both the chromatin and lipidome of cancer cells. In this study, we show that valproic acid (VPA), a brain penetrant anti-seizure medication and histone deacetylase inhibitor, inhibits the growth of IDH1 mutant tumors in vivo and in vitro, with at least some selectivity over IDH1 wild-type tumors. Surprisingly, genes upregulated by VPA showed no enhanced chromatin accessibility at the promoter, but there was a correlation between VPA-downregulated genes and diminished promoter chromatin accessibility. VPA inhibited the transcription of lipogenic genes and these lipogenic genes showed significant decreases in promoter chromatin accessibility only in the IDH1 MT glioma cell lines tested. VPA inhibited the mTOR pathway and a key lipogenic gene, fatty acid synthase (FASN). Both VPA and a selective FASN inhibitor TVB-2640 rewired the lipidome and promoted apoptosis in an IDH1 MT but not in an IDH1 WT glioma cell line. We further find that HDACs are involved in the regulation of lipogenic genes and HDAC6 is particularly important for the regulation of FASN in IDH1 MT glioma. Finally, we show that FASN knockdown alone and VPA in combination with FASN knockdown significantly improved the survival of mice in an IDH1 MT primary orthotopic xenograft model in vivo. We conclude that targeting fatty acid metabolism through HDAC inhibition and/or FASN inhibition may be a novel therapeutic opportunity in IDH1 mutant gliomas.