Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Med Virol ; 96(6): e29708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804179

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.


Assuntos
COVID-19 , Filogenia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/virologia , COVID-19/transmissão , COVID-19/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Estudos Retrospectivos , Masculino , Feminino , Glicoproteína da Espícula de Coronavírus/genética , Pessoa de Meia-Idade , Estudos Longitudinais , Genoma Viral/genética , Idoso , Sequenciamento Completo do Genoma , Evolução Molecular , Hospitalização , Nasofaringe/virologia , Teorema de Bayes , Adulto
2.
J Med Virol ; 95(4): e28714, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37000592

RESUMO

The SARS-CoV-2 BF.7 variant represents one of the most recent subvariant under monitoring. At the beginning of the 2023 it caused several concerns especially in Asia because of a resurge in COVID-19 cases. Here we perform a genome-based integrative approach on SARS-CoV-2 BF.7 to shed light on this emerging lineage and produce some consideration on its real dangerousness. Both genetic and structural data suggest that this new variant currently does not show evidence of an high expansion capability. It is very common in Asia, but it appears less virulent than other Omicron variants as proved by its relatively low evolutionary rate (5.62 × 10-4 subs/sites/years). The last plateau has been reached around December 14, 2022 and then the genetic variability, and thus the viral population size, no longer increased. As already seen for several previous variants, the features that may be theoretically related to advantages are due to genetic drift that allows to the virus a constant adaptability to the host, but is not strictly connected to a fitness advantage. These results have further pointed that the genome-based monitoring must continue uninterruptedly to be prepared and well documented on the real situation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Ásia/epidemiologia , Evolução Biológica
3.
J Med Virol ; 95(3): e28625, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852665

RESUMO

Recombination is the main contributor to RNA virus evolution, and SARS-CoV-2 during the pandemic produced several recombinants. The most recent SARS-CoV-2 recombinant is the lineage labeled XBB, also known as Gryphon, which arose from BJ.1 and BM.1.1.1. Here we performed a genome-based survey aimed to compare the new recombinant with its parental lineages that never became dominant. Genetic analyses indicated that the recombinant XBB and its first descendant XBB.1 show an evolutionary condition typical of an evolutionary blind background with no further epidemiologically relevant descendant. Genetic variability and expansion capabilities are slightly higher than parental lineages. Bayesian Skyline Plot indicates that XBB reached its plateau around October 6, 2022 and after an initial rapid growth the viral population size did not further expand, and around November 10, 2022 its levels of genetic variability decreased. Simultaneously with the reduction of the XBB population size, an increase of the genetic variability of its first sub-lineage XBB.1 occurred, that in turn reached the plateau around November 9, 2022 showing a kind of vicariance with its direct progenitors. Structure analysis indicates that the affinity for ACE2 surface in XBB/XBB.1 RBDs is weaker than for BA.2 RBD. In conclusion, at present XBB and XBB.1 do not show evidence about a particular danger or high expansion capability. Genome-based monitoring must continue uninterrupted to individuate if further mutations can make XBB more dangerous or generate new subvariants with different expansion capability.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teorema de Bayes , Glicoproteína da Espícula de Coronavírus/química
4.
J Med Virol ; 95(9): e29075, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37665162

RESUMO

The severe acute respiratory syndrome coronavirus 2 EG.5 lineage is the latest variant under monitoring, and it is generating significant concern due to its recent upward trend in prevalence. Our aim was to gain insights into this emerging lineage and offer insights into its actual level of threat. Both genetic and structural data indicate that this novel variant presently lacks substantial evidence of having a high capacity for widespread transmission. Their viral population sizes expanded following a very mild curve and peaked several months after the earliest detected sample. Currently, neither the viral population size of EG.5 nor that of its first descendant is increasing. The genetic variability appear to be flattened, as evidenced by its relatively modest evolutionary rate (9.05 × 10-4 subs/site/year). As has been observed with numerous prior variants, attributes that might theoretically provide advantages seem to stem from genetic drift, enabling the virus to continually adjust to its host, albeit without a clear association with enhanced dangerousness. These findings further underscore the necessity for ongoing genome-based monitoring, ensuring preparedness and a well-documented understanding of the unfolding situation.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Evolução Biológica , Deriva Genética , Densidade Demográfica
5.
J Med Virol ; 95(8): e29012, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548148

RESUMO

This comprehensive review focuses on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact as the cause of the COVID-19 pandemic. Its objective is to provide a cohesive overview of the epidemic history and evolutionary aspects of the virus, with a particular emphasis on its emergence, global spread, and implications for public health. The review delves into the timelines and key milestones of SARS-CoV-2's epidemiological progression, shedding light on the challenges encountered during early containment efforts and subsequent waves of transmission. Understanding the evolutionary dynamics of the virus is crucial in monitoring its potential for adaptation and future outbreaks. Genetic characterization of SARS-CoV-2 is discussed, with a focus on the emergence of new variants and their implications for transmissibility, severity, and immune evasion. The review highlights the important role of genomic surveillance in tracking viral mutations linked to establishing public health interventions. By analyzing the origins, global spread, and genetic evolution of SARS-CoV-2, valuable insights can be gained for the development of effective control measures, improvement of pandemic preparedness, and addressing future emerging infectious diseases of international concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias/prevenção & controle , Saúde Pública , Surtos de Doenças
6.
Vet Pathol ; 60(5): 560-577, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37458195

RESUMO

Disease outbreaks in several ecologically or commercially important invertebrate marine species have been reported in recent years all over the world. Mass mortality events (MMEs) have affected the noble pen shell (Pinna nobilis), causing its near extinction. Our knowledge of the dynamics of diseases affecting this species is still unclear. Early studies investigating the causative etiological agent focused on a novel protozoan parasite, Haplosporidium pinnae, although further investigations suggested that concurrent polymicrobial infections could have been pivotal in some MMEs, even in the absence of H. pinnae. Indeed, moribund specimens collected during MMEs in Italy, Greece, and Spain demonstrated the presence of a bacteria from within the Mycobacterium simiae complex and, in some cases, species similar to Vibrio mediterranei. The diagnostic processes used for investigation of MMEs are still not standardized and require the expertise of veterinary and para-veterinary pathologists, who could simultaneously evaluate a variety of factors, from clinical signs to environmental conditions. Here, we review the available literature on mortality events in P. nobilis and discuss approaches to define MMEs in P. nobilis. The proposed consensus approach should form the basis for establishing a foundation for future studies aimed at preserving populations in the wild.


Assuntos
Bivalves , Haplosporídios , Mycobacterium , Animais , Bivalves/microbiologia , Bivalves/parasitologia , Itália , Surtos de Doenças
7.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686383

RESUMO

The XBB.1.16 SARS-CoV-2 variant, also known as Arcturus, is a recent descendant lineage of the recombinant XBB (nicknamed Gryphon). Compared to its direct progenitor, XBB.1, XBB.1.16 carries additional spike mutations in key antigenic sites, potentially conferring an ability to evade the immune response compared to other circulating lineages. In this context, we conducted a comprehensive genome-based survey to gain a detailed understanding of the evolution and potential dangers of the XBB.1.16 variant, which became dominant in late June. Genetic data indicates that the XBB.1.16 variant exhibits an evolutionary background with limited diversification, unlike dangerous lineages known for rapid changes. The evolutionary rate of XBB.1.16, which amounts to 3.95 × 10-4 subs/site/year, is slightly slower than that of its direct progenitors, XBB and XBB.1.5, which have been circulating for several months. A Bayesian Skyline Plot reconstruction suggests that the peak of genetic variability was reached in early May 2023, and currently, it is in a plateau phase with a viral population size similar to the levels observed in early March. Structural analyses indicate that, overall, the XBB.1.16 variant does not possess structural characteristics markedly different from those of the parent lineages, and the theoretical affinity for ACE2 does not seem to change among the compared variants. In conclusion, the genetic and structural analyses of SARS-CoV-2 XBB.1.16 do not provide evidence of its exceptional danger or high expansion capability. Detected differences with previous lineages are probably due to genetic drift, which allows the virus constant adaptability to the host, but they are not necessarily connected to a greater danger. Nevertheless, continuous genome-based monitoring is essential for a better understanding of its descendants and other lineages.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , COVID-19/genética , SARS-CoV-2/genética , Deriva Genética
8.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499592

RESUMO

The BQ.1 SARS-CoV-2 variant, also known as Cerberus, is one of the most recent Omicron descendant lineages. Compared to its direct progenitor BA.5, BQ.1 has some additional spike mutations in some key antigenic sites, which confer further immune escape ability over other circulating lineages. In such a context, here, we perform a genome-based survey aimed at obtaining a complete-as-possible nuance of this rapidly evolving Omicron subvariant. Genetic data suggest that BQ.1 represents an evolutionary blind background, lacking the rapid diversification that is typical of a dangerous lineage. Indeed, the evolutionary rate of BQ.1 is very similar to that of BA.5 (7.6 × 10-4 and 7 × 10-4 subs/site/year, respectively), which has been circulating for several months. The Bayesian Skyline Plot reconstruction indicates a low level of genetic variability, suggesting that the peak was reached around 3 September 2022. Concerning the affinity for ACE2, structure analyses (also performed by comparing the properties of BQ.1 and BA.5 RBD) indicate that the impact of the BQ.1 mutations may be modest. Likewise, immunoinformatic analyses showed moderate differences between the BQ.1 and BA5 potential B-cell epitopes. In conclusion, genetic and structural analyses on SARS-CoV-2 BQ.1 suggest no evidence of a particularly dangerous or high expansion capability. Genome-based monitoring must continue uninterrupted for a better understanding of its descendants and all other lineages.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/genética , SARS-CoV-2/genética , Evolução Biológica
9.
Parasitol Res ; 120(1): 289-300, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33205238

RESUMO

Leishmaniasis is a widespread, vector-borne parasitosis causing clinical manifestations in animals and in humans. In dogs, Canine Leishmaniasis has been reported in as much as 50 countries and the Mediterranean basin is known to be one of the most affected zones. Within these areas, the Island of Sardinia (Italy) has long been considered endemic for leishmaniasis and the presence of two arthropod vectors has recently been reported there. Nevertheless, to date, no epidemiological surveys regarding CanL have been carried out on the island. Hence, for the first time, the seroprevalence and the risk factors were investigated. Blood samples, as well as clinical and general information from 1.147 dogs, were collected and analyzed. Dogs consisted of two distinct populations, namely "owned dogs" and "kennel dogs." Anti-Leishmania IgG antibodies were detected using IFAT and samples were scored as positive at a cut-off dilution of 1:80. Data was analyzed using a Chi-squared test and bivariate and multivariate analyses were performed. Overall, 15.4% of dogs were found to be infected with CanL while only 44.1% of these animals exhibited clinical signs. Owned dogs (27.2%) were found to be infected more often than kennel dogs (10.6%); male dogs were found to be more frequently infected than female dogs and the number of infected animals increases with age. The present survey confirmed the endemic nature of leishmaniasis in Sardinia with a similar seroprevalence as mainland Italy. The results obtained serve as validation for the hypothesis that, in endemic areas, clinical CanL representations constitute only a fraction of the leishmaniasis cases.


Assuntos
Anticorpos Antiprotozoários/sangue , Doenças do Cão/epidemiologia , Leishmania infantum/isolamento & purificação , Leishmaniose/epidemiologia , Leishmaniose/veterinária , Animais , Doenças do Cão/parasitologia , Cães , Feminino , Imunoglobulina G/sangue , Itália/epidemiologia , Leishmania infantum/imunologia , Masculino , Fatores de Risco , Estudos Soroepidemiológicos
11.
Mol Ecol ; 28(12): 3012-3024, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31125994

RESUMO

Aquaculture finfish production based on floating cage technology has raised increasing concerns regarding the genetic integrity of natural populations. Accidental mass escapes can induce the loss of genetic diversity in wild populations by increasing genetic drift and inbreeding. Farm escapes probably represent an important issue in the gilthead sea bream (Sparus aurata), which accounted for 76.4% of total escapees recorded in Europe during a 3-year survey. Here, we investigated patterns of genetic variation in farmed and wild populations of gilthead sea bream from the Western Mediterranean, a region of long gilthead sea bream farming. We focused on the role that genetic drift may play in shaping these patterns. Results based on microsatellite markers matched those observed in previous studies. Farmed populations showed lower levels of genetic diversity than wild populations and were genetically divergent from their wild counterparts. Overall, farmed populations showed the smallest effective population size and increased levels of relatedness compared to wild populations. The small broodstock size coupled with breeding practices that may favour the variance in individual reproductive success probably boosted genetic drift. This factor appeared to be a major driver of the genetic patterns observed in the gilthead sea bream populations analysed in the present study. These results further stress the importance of recommendations aimed at maintaining broodstock sizes as large as possible and equal sex-ratios among breeders, as well as avoiding unequal contributions among parents.


Assuntos
Aquicultura , Perciformes/genética , Dourada/genética , Animais , Deriva Genética , Variação Genética/genética , Repetições de Microssatélites/genética
12.
J Fish Biol ; 95(5): 1286-1297, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31469430

RESUMO

We used the cytochrome oxidase subunit I (coI) gene DNA to barcode 117 endemic Gulf and cosmopolitan Indo-West Pacific fish species belonging to 54 families and 13 orders. Novel DNA barcodes were provided for 18 fish species (Trachinocephalus sp., Nematalosa sp., Herklotsichthys lossei, Upeneus doriae, Trachurus indicus, Apogonichthyoides taeniatus, Verulux cypselurus, Favonigobius sp., Suezichthus gracilis, Sillago sp., Brachirus orientalis, Pegusa sp., Lepidotrigla bispinosa, Lepidotrigla sp., Grammoplites suppositus, Hippichthys sp., Paramonacanthus sp. and Triacanthus sp.). The species delimitation analysis, conducted with Poisson tree processes- Bayesian PTP (PTP-bPTP) and nucleotide-divergence-threshold (NDT) models), found 137 and 119 entities respectively. Overall, NDT method, neighbour-joining species tree and the prior taxonomic assessment provided similar results. Among the 54 families considered, only 10 (Ariommatidae, Ephippidae, Leiognathidae, Nemipteridae, Plotosidae, Pomacanthidae, Pomacentridae, Priacanthidae and Rachycentridae) showed the occurrence of molecular diagnostic pure characters. The DNA barcoding database developed during this study will help ichthyologists to identify and resolve the taxonomic ambiguities they may encounter with the fishes occurring in The Gulf and throughout the region.


Assuntos
Código de Barras de DNA Taxonômico , Peixes/genética , Animais , Teorema de Bayes , Biodiversidade , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Peixes/classificação , Filogenia , Arábia Saudita , Análise de Sequência de DNA
14.
Microbiol Resour Announc ; 13(4): e0122123, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38415642

RESUMO

Listeria monocytogenes is the etiological agent of the listeriosis. Here, we described three draft genome sequences of L. monocytogenes isolated in Italy from stranded individuals of the striped dolphin Stenella coeruleoalba. All the genomes have been molecular typed through the multilocus sequence typing to identify the phylogenetic lineage, clonal complex, sublineage, and serogroup.

15.
Pathogens ; 13(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668289

RESUMO

The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface proteins of A/H1N1pdm09 strains circulating in Italy over a fourteen-year period from 2009 to 2023 in relation to global strains. Phylogenetic analysis revealed rapid transmission and diversification of viral variants during the early pandemic that clustered in clade 6B.1. In contrast, limited genetic diversity was observed during the 2023 season, probably due to the genetic drift, which provides the virus with a constant adaptability to the host; furthermore, all isolates were split into two main groups representing two clades, i.e., 6B.1A.5a.2a and its descendant 6B.1A.5a.2a.1. The HA gene showed a faster rate of evolution compared to the NA gene. Using FUBAR, we identified positively selected sites 41 and 177 for HA and 248, 286, and 455 for NA in 2009, as well as sites 22, 123, and 513 for HA and 339 for NA in 2023, all of which may be important sites related to the host immune response. Changes in glycosylation acquisition/loss at prominent sites, i.e., 177 in HA and 248 in NA, should be considered as a predictive tool for early warning signs of emerging pandemics, and for vaccine and drug development.

16.
Viruses ; 16(1)2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275968

RESUMO

Orf virus (ORFV) belongs to the genus Parapoxvirus (Poxviridae family). It is the causative agent of contagious ecthyma (CE) that is an economically detrimental disease affecting small ruminants globally. Contagious ecthyma outbreaks are usually reported in intensive breeding of sheep and goats but they have also been reported in wildlife species. Notably, ORFV can infect humans, leading to a zoonotic disease. This study aims to elucidate the global evolutionary history of ORFV genomes in sheep and goats, including the first genomes from Central America in the analyses. In comparison to the last study on ORFV whole genomes, the database now includes 11 more sheep and goat genomes, representing an increase of 42%. The analysis of such a broader database made it possible to obtain a fine molecular dating of the coalescent time for ORFV S and G genomes, further highlighting the genetic structuring between sheep and goat genomes and corroborating their emergence in the latter half of 20th century.


Assuntos
Ectima Contagioso , Vírus do Orf , Humanos , Ovinos , Animais , Vírus do Orf/genética , Ectima Contagioso/epidemiologia , Cabras , Ruminantes , Evolução Biológica , Filogenia
17.
Infect Dis Rep ; 15(3): 292-298, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37367188

RESUMO

In early February 2023, the Omicron subvariant XBB.1.5, also known as "Kraken", accounted for more than 44% of new COVID-19 cases worldwide, whereas a relatively new Omicron subvariant named CH.1.1, deemed "Orthrus", accounted for less than 6% of new COVID-19 cases during the subsequent weeks. This emerging variant carries a mutation, L452R, previously observed in the highly pathogenic Delta and the highly transmissible BA.4 and BA.5 variants, necessitating a shift to active surveillance to assure adequate preparedness for likely future epidemic peaks. We provide a preliminary understanding of the global distribution of this emerging SARS-CoV-2 variant by combining genomic data with structural molecular modeling. In addition, we shield light on the number of specific point mutations in this lineage that may have functional significance, thereby increasing the risk of disease severity, vaccine resistance, and increased transmission. This variant shared about 73% of the mutations with Omicron-like strains. Our homology modeling analysis revealed that CH.1.1 may have a weakened interaction with ACE2 and that its electrostatic potential surface appears to be more positive than that of the reference ancestral virus. Finally, our phylogenetic analysis revealed that this likely-emerging variant was already cryptically circulating in European countries prior to its first detection, highlighting the importance of having access to whole genome sequences for detecting and controlling emerging viral strains.

18.
Animals (Basel) ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38200845

RESUMO

Pinna nobilis, commonly known as the noble pen shell, is a marine bivalve endemic to the Mediterranean Sea. Unfortunately, due to a multifactorial disease that began affecting its populations in 2016, the species is currently facing the threat of extinction. To gain insights into the evolutionary history of P. nobilis before the mass mortality event (MME), and to obtain a comprehensive understanding of how evolutionary processes led to the adaptation of the species into the Mediterranean Sea, phylogenetic and phylogeographic analyses were carried out. The dataset analysed includes 469 sequences of COI gene fragment both from GenBank and the present study (100). The analysis performed evidenced that P. nobilis diverged about 2.5 mya, after the entrance of its ancestor into the Mediterranean Sea following the Zanclean flood (5.33 mya). Moreover, our results suggest that the starting point of colonisation was the central part of the western Mediterranean basin, with the eastern basin being populated subsequently. From a conservational viewpoint, these results provide important hints for present and future restocking plans, helping to reconstruct the pre-existing genetic variability in sites where the species became extinct.

19.
Animals (Basel) ; 13(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36766269

RESUMO

Biological invasions are a major threat to the conservation of biodiversity, as invasive species affect native biota through competition, predation, pathogen introduction, habitat alteration, and hybridisation. The present study focuses on a southern pike population, Esox cisalpinus (Teleostei: Esocidae), that has been introduced outside the species' native range. Using microsatellite markers, this study's objective was to gather baseline genetic information and assess the presence of hybrids between this species and E. lucius in the introduced population. The resulting estimates of genetic diversity and effective population size are comparable to those observed in the species' native range. Although different methods yield contrasting and uncertain evidence regarding introgressive hybridization, the presence of late-generation hybrids cannot be completely ruled out. Large numbers of breeders as well as multiple introductions of genetically divergent cohorts and introgressive hybridisation may explain the high genetic diversity of this recently introduced southern pike population. The present study issues a warning that the conservation of southern pike' introgressive hybridisation between northern and southern pike might be underestimated. The genetic information gathered herein may unravel the origin, number of introduction events, and evolutionary trajectory of the introduced population. This information may help us understand the evolution of introgressive hybridisation in the southern pike's native areas.

20.
Viruses ; 15(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632063

RESUMO

The COVID-19 pandemic has not only strained healthcare systems in Africa but has also intensified the impact of emerging and re-emerging diseases. Specifically in Equatorial Guinea, mirroring the situation in other African countries, unique zoonotic outbreaks have occurred during this challenging period. One notable resurgence is Marburg virus disease (MVD), which has further burdened the already fragile healthcare system. The re-emergence of the Marburg virus amid the COVID-19 pandemic is believed to stem from a probable zoonotic spill-over, although the precise transmission routes remain uncertain. Given the gravity of the situation, addressing the existing challenges is paramount. Though the genome sequences from the current outbreak were not available for this study, we analyzed all the available whole genome sequences of this re-emerging pathogen to advocate for a shift towards active surveillance. This is essential to ensure the successful containment of any potential Marburg virus outbreak in Equatorial Guinea and the wider African context. This study, which presents an update on the phylodynamics and the genetic variability of MARV, further confirmed the existence of at least two distinct patterns of viral spread. One pattern demonstrates a slower but continuous and recurring virus circulation, while the other exhibits a faster yet limited and episodic spread. These results highlight the critical need to strengthen genomic surveillance in the region to effectively curb the pathogen's dissemination. Moreover, the study emphasizes the importance of prompt alert management, comprehensive case investigation and analysis, contact tracing, and active case searching. These steps are vital to support the healthcare system's response to this emerging health crisis. By implementing these strategies, we can better arm ourselves against the challenges posed by the resurgence of the Marburg virus and other infectious diseases.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , África/epidemiologia , População Negra , COVID-19/epidemiologia , Marburgvirus/genética , Pandemias , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Surtos de Doenças , Guiné Equatorial/epidemiologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/genética , Zoonoses Virais/virologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA