Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 42(3): 252-64, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21232601

RESUMO

The causes of amyotrophic lateral sclerosis (ALS) are mostly undefined; however, excitotoxic injury and astrogliosis may contribute to motor neuron (MN) degeneration. Group I metabotropic glutamate (mGlu) receptors are over-expressed in reactive astrocytes in ALS, but the functional significance of this over-expression is presently unknown. We examined the role of group I mGlu receptors on excitotoxic death of spinal cord MNs grown in cultures enriched of astrocytes bearing a reactive phenotype. A prolonged exposure to the selective non-competitive mGlu5 receptor antagonist MPEP reduced AMPA-mediated toxicity and cobalt uptake in MNs. Expression levels of the GluR1 (but not GluR2) AMPA receptor subunit and levels of brain-derived neurotrophic factor (BDNF) were reduced in mixed spinal cord cultures pretreated with MPEP. In addition, neuroprotection by MPEP was less than additive with that produced by a neutralizing anti-BDNF antibody and a treatment with exogenous BDNF masked the protective effect of MPEP, suggesting that mGlu5 receptors and BDNF converge in facilitating excitotoxic MN death. The protective effect of MPEP was absent in cultures with a reduced number of astrocytes. We suggest that blocking astrocytic mGlu5 receptors is a potential therapeutic strategy in ALS.


Assuntos
Morte Celular/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Medula Espinal/efeitos dos fármacos , Análise de Variância , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Cromonas/farmacologia , Ensaio de Imunoadsorção Enzimática , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Imuno-Histoquímica , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Fármacos Neuroprotetores/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Medula Espinal/citologia , Medula Espinal/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
2.
CNS Neurol Disord Drug Targets ; 15(4): 448-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26996174

RESUMO

Intellectual disability (ID) and autism are present in several neurodevelopmental disorders and are often associated in genetic syndromes, such as Fragile X and Rett syndromes. While most evidence indicates that a genetic component plays an important role in the aetiology of both autism and ID, a number of studies suggest that immunological dysfunctions may participate in the pathophysiology of these disorders. Brain-specific autoantibodies have been detected in the sera of many autistic children and autoimmune disorders are increased in families of children with autism. Furthermore, cytokine imbalance has been reported in children with autism. These results may reflect an inappropriate immune response to environmental factors, such as infectious or toxic exposure. The role of microglia as sensors of pre- and post-natal environmental stimuli and its involvement in the regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis has recently emerged. An abnormal immune response during critical windows of development and consequent abnormal production of neuro-inflammatory mediators may have an impact on the function and structure of brain and can play a role in the pathogenesis of non syndromic autism. Recent evidence suggests an involvement of neuro-inflammation also in syndromic forms of autism and ID. Immune dysregulation has been found in children with Fragile X syndrome and an intrinsic microglia dysfunction has been recently reported in Rett syndrome. The present review summarizes the current literature suggesting that neuro-inflammatory mechanisms may contribute to the pathogenesis of different ID- and autism-associated disorders, thus representing common pathophysiological pathways and potential therapeutic targets.


Assuntos
Transtorno do Espectro Autista/etiologia , Citocinas/metabolismo , Doenças do Sistema Imunitário/complicações , Deficiência Intelectual/etiologia , Humanos , Doenças do Sistema Imunitário/etiologia , Microglia/metabolismo , Microglia/patologia
3.
Brain Res ; 1043(1-2): 95-106, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15862522

RESUMO

Age-dependent changes in the expression of group I and II metabotropic glutamate (mGlu) receptors were studied by in situ hybridization, Western blot analysis and immunohistochemistry. Male Fisher 344 rats of three ages (3, 12 and 25 months) were tested. Age-related increases in mGlu1 receptor mRNA levels were found in several areas (thalamic nuclei, hippocampal CA3) with parallel increases in mGlu1a receptor protein expression. However, a slight decrease in mGlu1a receptor mRNA expression in individual Purkinje neurons and a decline in cerebellar mGlu1a receptor protein levels were detected in aged animals. In contrast, mGlu1b receptor mRNA levels increased in the cerebellar granule cell layer. Although mGlu5 receptor mRNA expression decreased in many regions, its protein expression remained unchanged during aging. Compared to the small changes in mGlu2 receptor mRNA levels, mGlu3 receptor mRNA levels showed substantial age differences. An increased mGlu2/3 receptor protein expression was found in the frontal cortex, thalamus, hippocampus and corpus callosum in aged animals. These results demonstrate region- and subtype-specific, including splice variant specific changes in the expression of mGlu receptors in the brain with increasing age.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Western Blotting , Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Masculino , RNA Mensageiro/análise , Ratos , Ratos Endogâmicos F344
4.
Biol Psychiatry ; 72(11): 924-33, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22817866

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism. Fmr1 knockout (Fmr1 KO) mice, an animal model of FXS, exhibit spatial memory impairment and synapse malfunctioning in the hippocampus, with abnormal enhancement of long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). The neurotransmitter serotonin (5-HT) modulates hippocampal-dependent learning through serotonin 1A (5-HT1A) and serotonin 7 (5-HT7) receptors; the underlying mechanisms are unknown. METHODS: We used electrophysiology to test the effects of 5-HT on mGluR-LTD in wild-type and Fmr1 KO mice and immunocytochemistry and biotinylation assay to study related changes of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) glutamate receptor surface expression. RESULTS: Application of 5-HT or 8-OH-DPAT (a mixed 5-HT1A/5-HT7 agonist) reversed mGluR-LTD in hippocampal slices. Reversal of mGluR-LTD by 8-OH-DPAT persisted in the presence of the 5-HT1A receptor antagonist WAY-100635, was abolished by SB-269970 (5-HT7 receptor antagonist), and was mimicked by LP-211, a novel selective 5-HT7 receptor agonist. Consistently, 8-OH-DPAT decreased mGluR-mediated reduction of AMPA glutamate receptor 2 (GluR2) subunit surface expression in hippocampal slices and cultured hippocampal neurons, an effect mimicked by LP-211 and blocked by SB-269970. In Fmr1 KO mice, mGluR-LTD was abnormally enhanced; similarly to wild-type, 8-OH-DPAT reversed mGluR-LTD and decreased mGluR-induced reduction of surface AMPA receptors, an effect antagonized by SB-269970. CONCLUSIONS: Serotonin 7 receptor activation reverses metabotropic glutamate receptor-induced AMPA receptor internalization and LTD both in wild-type and in Fmr1 KO mice, correcting excessive mGluR-LTD. Therefore, selective activation of 5-HT7 receptors may represent a novel strategy in the therapy of FXS.


Assuntos
Síndrome do Cromossomo X Frágil/metabolismo , Hipocampo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA