Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Genet Sel Evol ; 56(1): 8, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243193

RESUMO

BACKGROUND: Improving pigs' ability to digest diets with an increased dietary fiber content is a lever to improve feed efficiency and limit feed costs in pig production. The aim of this study was to determine whether information on the gut microbiota and host genetics can contribute to predict digestive efficiency (DE, i.e. digestibility coefficients of energy, organic matter, and nitrogen), feed efficiency (FE, i.e. feed conversion ratio and residual feed intake), average daily gain, and daily feed intake phenotypes. Data were available for 1082 pigs fed a conventional or high-fiber diet. Fecal samples were collected at 16 weeks, and DE was estimated using near­infrared spectrometry. A cross-validation approach was used to predict traits within the same diet, for the opposite diet, and for a combination of both diets, by implementing three models, i.e. with only genomic (Gen), only microbiota (Micro), and both genomic and microbiota information (Micro+Gen). The predictive ability with and without sharing common sires and breeding environment was also evaluated. Prediction accuracy of the phenotypes was calculated as the correlation between model prediction and phenotype adjusted for fixed effects. RESULTS: Prediction accuracies of the three models were low to moderate (< 0.47) for growth and FE traits and not significantly different between models. In contrast, for DE traits, prediction accuracies of model Gen were low (< 0.30) and those of models Micro and Micro+Gen were moderate to high (> 0.52). Prediction accuracies were not affected by the stratification of diets in the reference and validation sets and were in the same order of magnitude within the same diet, for the opposite diet, and for the combination of both diets. Prediction accuracies of the three models were significantly higher when pigs in the reference and validation populations shared common sires and breeding environment than when they did not (P < 0.001). CONCLUSIONS: The microbiota is a relevant source of information to predict DE regardless of the diet, but not to predict growth and FE traits for which prediction accuracies were similar to those obtained with genomic information only. Further analyses on larger datasets and more diverse diets should be carried out to complement and consolidate these results.


Assuntos
Dieta , Microbiota , Animais , Suínos , Dieta/veterinária , Ingestão de Alimentos/genética , Fenótipo , Genoma , Ração Animal/análise
2.
J Nutr ; 152(3): 723-736, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875085

RESUMO

BACKGROUND: In mammals, the establishment around weaning of a symbiotic relationship between the gut microbiota and its host determines long-term health. OBJECTIVES: The aim of this study was to identify the factors driving the comaturation of the gut microbiota and intestinal epithelium at the suckling-to-weaning transition. We hypothesized that the developmental stage, solid food ingestion, and suckling cessation contribute to this process. METHODS: From birth to day 18, Hyplus rabbits were exclusively suckling. From day 18 to day 25, rabbits were 1) exclusively suckling; 2) suckling and ingesting solid food; or 3) exclusively ingesting solid food. The microbiota (16S amplicon sequencing), metabolome (nuclear magnetic resonance), and epithelial gene expression (high-throughput qPCR) were analyzed in the cecum at days 18 and 25. RESULTS: The microbiota structure and metabolic activity were modified with age when rabbits remained exclusively suckling. The epithelial gene expression of nutrient transporters, proliferation markers, and innate immune factors were also regulated with age (e.g., 1.5-fold decrease of TLR5). Solid food ingestion by suckling rabbits had a major effect on the gut microbiota by increasing its α diversity, remodeling its structure (e.g., 6.3-fold increase of Ruminococcaceae), and metabolic activity (e.g., 4.6-fold increase of butyrate). Solid food introduction also regulated the gene expression of nutrient transporters, differentiation markers, and innate immune factors in the epithelium (e.g., 3-fold increase of nitric oxide synthase). Suckling cessation had no effect on the microbiota, while it regulated the expression of genes involved in epithelial differentiation and immunoglobulin transport (e.g., 2.5-increase of the polymeric immunoglobulin receptor). CONCLUSIONS: In rabbits, the maturation of the microbiota at the suckling-to-weaning transition is driven by the introduction of solid food and, to a lesser extent, by the developmental stage. In contrast, the maturation of the intestinal epithelium at the suckling-to-weaning transition is under the influence of the developmental stage, solid food introduction, and suckling cessation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Ceco , Mucosa Intestinal/metabolismo , Mamíferos , Coelhos , Desmame
3.
Genet Sel Evol ; 54(1): 29, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468740

RESUMO

BACKGROUND: The objective of the present study was to investigate how variation in the faecal microbial composition is associated with variation in average daily gain (ADG), backfat thickness (BFT), daily feed intake (DFI), feed conversion ratio (FCR), and residual feed intake (RFI), using data from two experimental pig lines that were divergent for feed efficiency. Estimates of microbiability were obtained by a Bayesian approach using animal mixed models. Microbiome-wide association analyses (MWAS) were conducted by single-operational taxonomic units (OTU) regression and by back-solving solutions of best linear unbiased prediction using a microbiome covariance matrix. In addition, accuracy of microbiome predictions of phenotypes using the microbiome covariance matrix was evaluated. RESULTS: Estimates of heritability ranged from 0.31 ± 0.13 for FCR to 0.51 ± 0.10 for BFT. Estimates of microbiability were lower than those of heritability for all traits and were 0.11 ± 0.09 for RFI, 0.20 ± 0.11 for FCR, 0.04 ± 0.03 for DFI, 0.03 ± 0.03 for ADG, and 0.02 ± 0.03 for BFT. Bivariate analyses showed a high microbial correlation of 0.70 ± 0.34 between RFI and FCR. The two approaches used for MWAS showed similar results. Overall, eight OTU with significant or suggestive effects on the five traits were identified. They belonged to the genera and families that are mainly involved in producing short-chain fatty acids and digestive enzymes. Prediction accuracy of phenotypes using a full model including the genetic and microbiota components ranged from 0.60 ± 0.19 to 0.78 ± 0.05. Similar accuracies of predictions of the microbial component were observed using models that did or did not include an additive animal effect, suggesting no interaction with the genetic effect. CONCLUSIONS: Our results showed substantial associations of the faecal microbiome with feed efficiency related traits but negligible effects with growth traits. Microbiome data incorporated as a covariance matrix can be used to predict phenotypes of animals that do not (yet) have phenotypic information. Connecting breeding environment between training sets and predicted populations could be necessary to obtain reliable microbiome predictions.


Assuntos
Ração Animal , Microbiota , Ração Animal/análise , Animais , Teorema de Bayes , Ingestão de Alimentos/genética , Fenótipo , Suínos/genética
4.
Genet Sel Evol ; 54(1): 55, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896976

RESUMO

BACKGROUND: Breeding pigs that can efficiently digest alternative diets with increased fiber content is a viable strategy to mitigate the feed cost in pig production. This study aimed at determining the contribution of the gut microbiota and host genetics to the phenotypic variability of digestive efficiency (DE) traits, such as digestibility coefficients of energy, organic matter and nitrogen, feed efficiency (FE) traits (feed conversion ratio and residual feed intake) and growth traits (average daily gain and daily feed intake). Data were available for 791 pigs fed a conventional diet and 735 of their full-sibs fed a high-fiber diet. Fecal samples were collected at 16 weeks of age to sequence the V3-V4 regions of the 16S ribosomal RNA gene and predict DE with near-infrared spectrometry. The proportions of phenotypic variance explained by the microbiota (microbiability) were estimated under three OTU filtering scenarios. Then, microbiability and heritability were estimated independently (models Micro and Gen) and jointly (model Micro+Gen) using a Bayesian approach for all traits. Breeding values were estimated in models Gen and Micro+Gen. RESULTS: Differences in microbiability estimates were significant between the two extreme filtering scenarios (14,366 and 803 OTU) within diets, but only for all DE. With the intermediate filtering scenario (2399 OTU) and for DE, microbiability was higher (> 0.44) than heritability (< 0.32) under both diets. For two of the DE traits, microbiability was significantly higher under the high-fiber diet (0.67 ± 0.06 and 0.68 ± 0.06) than under the conventional diet (0.44 ± 0.06). For growth and FE, heritability was higher (from 0.26 ± 0.06 to 0.44 ± 0.07) than microbiability (from 0.17 ± 0.05 to 0.35 ± 0.06). Microbiability and heritability estimates obtained with the Micro+Gen model did not significantly differ from those with the Micro and Gen models for all traits. Finally, based on their estimated breeding values, pigs ranked differently between the Gen and Micro+Gen models, only for the DE traits under both diets. CONCLUSIONS: The microbiota explained a significant proportion of the phenotypic variance of the DE traits, which was even larger than that explained by the host genetics. Thus, the use of microbiota information could improve the selection of DE traits, and to a lesser extent, of growth and FE traits. In addition, our results show that, at least for DE traits, filtering OTU is an important step and influences the microbiability.


Assuntos
Microbioma Gastrointestinal , Ração Animal/análise , Animais , Teorema de Bayes , Variação Biológica da População , Dieta/veterinária , Sus scrofa/genética , Suínos/genética
5.
J Proteome Res ; 20(1): 982-994, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289566

RESUMO

The gut microbiota plays a key role in intestinal development at the suckling-to-weaning transition. The objective of this study was to analyze the production of metabolites by the gut microbiota in suckling and weaned piglets. We studied piglets raised in two separate maternity farms and weaned at postnatal day 21 in the same farm. The fecal metabolome (1H nuclear magnetic resonance) and the microbiota composition (16S rRNA gene amplicon sequencing) and its predicted functions (PICRUSt2) were analyzed in the same piglets during the suckling period (postnatal day 13) and 2 days after weaning (postnatal day 23). The relative concentrations of the bacterial metabolites methylamine, dimethylamine, cadaverine, tyramine, putrescine, 5-aminovalerate, succinate, and 3-(4-hydroxyphenylpropionate) were higher during the suckling period than after weaning. In contrast, the relative concentrations of the short-chain fatty acids acetate and propionate were higher after weaning than during the suckling period. The maternity of origin of piglets also influenced the level of some bacterial metabolites (propionate and isobutyrate). The fecal metabolome signatures observed in suckling and weaned piglets were associated with specific microbiota-predicted functionalities, structure, and diversity. Gut microbiota-derived metabolites, which are differentially abundant between suckling and weaned piglets (e.g., short-chain fatty acids and biogenic amines), are known to regulate gut health. Thus, identification of metabolome signatures in suckling and weaned piglets paves the way for the development of health-promoting nutritional strategies, targeting the production of bacterial metabolites in early life.


Assuntos
Microbioma Gastrointestinal , Ração Animal/análise , Animais , Ácidos Graxos Voláteis , Feminino , Humanos , Gravidez , RNA Ribossômico 16S , Suínos , Desmame
6.
Br J Nutr ; 123(4): 372-382, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31690358

RESUMO

Starchy diets can induce hindgut dysbiosis in horses. The present study evaluated the impact of a yeast (Saccharomyces cerevisiae) and microalgae (Aurantiochytrium limacinum) supplementation on caecal, colonic and faecal microbial ecosystem and on blood inflammatory parameters of horses fed high-fibre or high-starch diets. Six fistulated geldings in a 2 × 2 Latin-square design were alternatively supplemented and received during each period 100 % hay (4 weeks) followed by a 56/44 hay/barley diet (3 weeks). Caecal, colonic and faecal samples were collected 4 h after the morning meal three times per diet, at 5-d intervals, to measure bacterial composition and microbial end products. Blood was simultaneously collected for measuring inflammatory markers. The starchy diet clearly modified the microbial ecosystem in the three digestive segments, with an increase of the amylolytic function and a decrease of the fibrolytic one. However, no effect of the diet was observed on the blood parameters. When horses were supplemented, no significant change was found in lipopolysaccharides, PG-E2, serum amyloid A concentrations and complete blood count neither in cellulose-utilising, starch-utilising and lactate-utilising bacteria concentrations nor in the volatile fatty acids and lactate concentrations and pH. Under supplementation, relative abundance of Family XIII Clostridiales increased in caecum and faeces irrespective of diet and relative abundance of Veillonellaceae was higher during the hay/barley diet in colon and faeces. Most variations of faecal bacterial taxa under supplementation were not observed in the hindgut. However, all variations suggested that supplementation could increase fibrolytic function whatever the diet and limit dysbiosis when the horses' diet changed from high fibre to high starch.


Assuntos
Dieta/veterinária , Suplementos Nutricionais , Microbioma Gastrointestinal , Microalgas , Fermento Seco/administração & dosagem , Ração Animal/microbiologia , Animais , Ceco/microbiologia , Colo/microbiologia , Fibras na Dieta/análise , Ecossistema , Fezes/microbiologia , Cavalos , Amido/análise
7.
Bioinformatics ; 34(8): 1287-1294, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29228191

RESUMO

Motivation: Metagenomics leads to major advances in microbial ecology and biologists need user friendly tools to analyze their data on their own. Results: This Galaxy-supported pipeline, called FROGS, is designed to analyze large sets of amplicon sequences and produce abundance tables of Operational Taxonomic Units (OTUs) and their taxonomic affiliation. The clustering uses Swarm. The chimera removal uses VSEARCH, combined with original cross-sample validation. The taxonomic affiliation returns an innovative multi-affiliation output to highlight databases conflicts and uncertainties. Statistical results and numerous graphical illustrations are produced along the way to monitor the pipeline. FROGS was tested for the detection and quantification of OTUs on real and in silico datasets and proved to be rapid, robust and highly sensitive. It compares favorably with the widespread mothur, UPARSE and QIIME. Availability and implementation: Source code and instructions for installation: https://github.com/geraldinepascal/FROGS.git. A companion website: http://frogs.toulouse.inra.fr. Contact: geraldine.pascal@inra.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenômica/métodos , Software , Bactérias/genética , Análise por Conglomerados
8.
Sci Data ; 11(1): 684, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918405

RESUMO

The transition from a milk-based diet to exclusive solid feeding deeply modifies microbiota-host crosstalk. Specifically, early ingestion of plant polysaccharides would be one of the main nutritional components to drive host-microbiota-interaction. To capture the effects of polysaccharides early-life nutrition (starch vs rapidly fermentable fiber) on the holobiont development, we investigated on the one hand the gut bacteriome and metabolome and on the other hand the transcriptome of two host gut tissues. Rabbit model was used to study post-natal co-development of the gut microbiota and its host around weaning transition. The assessment of the microbial composition of the gut appendix together with the caecum was provided for the first time. Gene expression signatures were analyzed along the gut (ileum and caecum) through high-throughput qPCR. The data collected were completed by the analysis of animal growth changes and time-series assessment of blood biomarkers. Those accessible and reusable data could help highlight the gut development dynamics as well as biological adaptation processes at the onset of solid feeding.


Assuntos
Microbioma Gastrointestinal , Polissacarídeos , Animais , Coelhos , Transcriptoma , Ceco , Desmame , Metaboloma , Multiômica
9.
Microbiol Spectr ; 11(4): e0069423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358441

RESUMO

Postweaning diarrhea (PWD) in piglets impair welfare, induce economic losses and lead to overuse of antibiotics. The early life gut microbiota was proposed to contribute to the susceptibility to PWD. The objective of our study was to evaluate in a large cohort of 116 piglets raised in 2 separate farms whether the gut microbiota composition and functions during the suckling period were associated with the later development of PWD. The fecal microbiota and metabolome were analyzed by 16S rRNA gene amplicon sequencing and nuclear magnetic based resonance at postnatal day 13 in male and female piglets. The later development of PWD was recorded for the same animals from weaning (day 21) to day 54. The gut microbiota structure and α-diversity during the suckling period were not associated with the later development of PWD. There was no significant difference in the relative abundances of bacterial taxa in suckling piglets that later developed PWD. The predicted functionality of the gut microbiota and the fecal metabolome signature during the suckling period were not linked to the later development of PWD. Trimethylamine was the bacterial metabolite which fecal concentration during the suckling period was the most strongly associated with the later development of PWD. However, experiments in piglet colon organoids showed that trimethylamine did not disrupt epithelial homeostasis and is thus not likely to predispose to PWD through this mechanism. In conclusion, our data suggest that the early life microbiota is not a major factor underlying the susceptibility to PWD in piglets. IMPORTANCE This study shows that the fecal microbiota composition and metabolic activity are similar in suckling piglets (13 days after birth) that either later develop post-weaning diarrhea (PWD) or not, which is a major threat for animal welfare that also causes important economic losses and antibiotic treatments in pig production. The aim of this work was to study a large cohort of piglets raised in separates environments, which is a major factor influencing the early life microbiota. One of the main findings is that, although the fecal concentration of trimethylamine in suckling piglets was associated with the later development of PWD, this gut microbiota-derived metabolite did not disrupt the epithelial homeostasis in organoids derived from the pig colon. Overall, this study suggests that the gut microbiota during the suckling period is not a major factor underlying the susceptibility of piglets to PWD.


Assuntos
Microbiota , Animais , Feminino , Masculino , Suínos , RNA Ribossômico 16S/genética , Diarreia/veterinária , Diarreia/microbiologia , Metilaminas , Bactérias/genética
10.
Front Microbiol ; 13: 1012341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687628

RESUMO

Introduction: Microbial digestion is of key importance for ruminants, and disturbances can affect efficiency and quality of products for human consumers. Ruminal biohydrogenation of dietary unsaturated fatty acids leads to a wide variety of specific fatty acids. Some dietary conditions can affect the pathways of this transformation, leading to trans-10 fatty acids rather than the more usual trans-11 fatty acids, this change resulting in milk fat depression in dairy cows. Materials and methods: We combined data from an induced and spontaneous trans-10 shift of ruminal biohydrogenation, providing new insight on bacterial changes at different taxonomic levels. A trans-10 shift was induced using dietary addition of concentrate and/or unsaturated fat, and the spontaneous milk fat depression was observed in a commercial dairy herd. Results and discussion: Most changes of microbial community related to bacteria that are not known to be involved in the biohydrogenation process, suggesting that the trans-10 shift may represent the biochemical marker of a wide change of bacterial community. At OTU level, sparse discriminant analysis revealed strong associations between this change of biohydrogenation pathway and some taxa, especially three taxa belonging to [Eubacterium] coprostanoligenes group, Muribaculaceae and Lachnospiraceae NK3A20 group, that could both be microbial markers of this disturbance and candidates for studies relative to their ability to produce trans-10 fatty acids.

11.
mSystems ; 7(3): e0024322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35674393

RESUMO

In mammals, the introduction of solid food is pivotal for the establishment of the gut microbiota. However, the effects of the first food consumed on long-term microbiota trajectory and host response are still largely unknown. This study aimed to investigate the influences of (i) the timing of first solid food ingestion and (ii) the consumption of plant polysaccharides on bacterial community dynamics and host physiology using a rabbit model. To modulate the first exposure to solid nutrients, solid food was provided to suckling rabbits from two different time points (3 or 15 days of age). In parallel, food type was modulated with the provision of diets differing in carbohydrate content throughout life: the food either was formulated with a high proportion of rapidly fermentable fibers (RFF) or was starch-enriched. We found that access to solid food as of 3 days of age accelerated the gut microbiota maturation. Our data revealed differential effects according to the digestive segment: precocious solid food ingestion influenced to a greater extent the development of bacterial communities of the appendix vermiformis, whereas life course polysaccharides ingestion had marked effects on the cecal microbiota. Greater ingestion of RFF was assumed to promote pectin degradation as revealed by metabolomics analysis. However, transcriptomic and phenotypic host responses remained moderately affected by experimental treatments, suggesting little outcomes of the observed microbiome modulations on healthy subjects. In conclusion, our work highlighted the timing of solid food introduction and plant polysaccharides ingestion as two different tools to modulate microbiota implantation and functionality. IMPORTANCE Our study was designed to gain a better understanding of how different feeding patterns affect the dynamics of gut microbiomes and microbe-host interactions. This research showed that the timing of solid food introduction is a key component of the gut microbiota shaping in early developmental stages, though with lower impact on settled gut microbiota profiles in older individuals. This study also provided in-depth analysis of dietary polysaccharide effects on intestinal microbiota. The type of plant polysaccharides reaching the gut through the lifetime was described as an important modulator of the cecal microbiome and its activity. These findings will contribute to better define the interventions that can be employed for modulating the ecological succession of young mammal gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Coelhos , Bactérias/metabolismo , Polissacarídeos/farmacologia , Dieta , Mamíferos
12.
Front Cell Dev Biol ; 10: 983031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105361

RESUMO

Intestinal organoids are innovative in vitro tools to study the digestive epithelium. The objective of this study was to generate jejunum and colon organoids from suckling and weaned piglets in order to determine the extent to which organoids retain a location-specific and a developmental stage-specific phenotype. Organoids were studied at three time points by gene expression profiling for comparison with the transcriptomic patterns observed in crypts in vivo. In addition, the gut microbiota and the metabolome were analyzed to characterize the luminal environment of epithelial cells at the origin of organoids. The location-specific expression of 60 genes differentially expressed between jejunum and colon crypts from suckling piglets was partially retained (48%) in the derived organoids at all time point. The regional expression of these genes was independent of luminal signals since the major differences in microbiota and metabolome observed in vivo between the jejunum and the colon were not reproduced in vitro. In contrast, the regional expression of other genes was erased in organoids. Moreover, the developmental stage-specific expression of 30 genes differentially expressed between the jejunum crypts of suckling and weaned piglets was not stably retained in the derived organoids. Differentiation of organoids was necessary to observe the regional expression of certain genes while it was not sufficient to reproduce developmental stage-specific expression patterns. In conclusion, piglet intestinal organoids retained a location-specific phenotype while the characteristics of developmental stage were erased in vitro. Reproducing more closely the luminal environment might help to increase the physiological relevance of intestinal organoids.

13.
Animal ; 15(7): 100270, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34167022

RESUMO

Postweaning feed restriction preserves rabbit digestive health after weaning, but the underlying physiological mechanisms are not yet understood. To elucidate whether the feeding intake pattern modification related to feed restriction might be involved, we studied the effects of both feed intake quantity and intake frequency. Animals were allotted at weaning (28 d old) in a 2 × 2 factorial design: feed intake quantity (AL = ad libitum vs R = 75% of AL) and fragmented feed distribution (FFD) (1 vs 13 distributions), thus forming four groups (AL1, AL13, R1 and R13). New Zealand White growing rabbits were used from weaning to slaughter (70 d old), to analyse mortality, morbidity, performance, intake behaviour, digestion and microbial activity. Seven days after starting feed restriction (35 d old, group R1), rabbits consumed 44% of the feed within 2 h, 65% in 4 h and in 7 h over 95%. Over the 28-70 d period, mortality was low (5.3%) while morbidity averaged 18.5% and neither was affected by treatment. However, FFD tended to decrease the morbidity rate during the first 14 days after weaning (P = 0.06). Feed conversion (28-70 d) was improved by restriction (+15%, P < 0.001) and by FFD (+5%, P < 0.001). Nutrient digestibility was improved by restriction (+10% for energy, P < 0.01), but not by FFD. Fragmented feed distribution led to a lower stomachal pH, in the antrum (1.48 vs 2.13, P < 0.001) and in the fundus (1.52 vs 2.63, P < 0.001), while a higher pH was found in the caecum (6.07 vs 5.86, P < 0.001). Butyrate proportion in the caecum was reduced by four units for restricted groups. Fragmented feed distribution reduced the caecal VFA concentration by 23% within restricted rabbit groups only. A similar interaction between intake level and FFD was observed for fibrolytic activity (cellulase and xylanase). The diversity of caecal bacterial community was not modified by either of the two factors studied. Globally, fragmented meals have no major impacts on the caecal microbial activity, diversity, and thus would not be implicated in the better resistance of restricted rabbit to digestive troubles.


Assuntos
Ração Animal , Ingestão de Alimentos , Ração Animal/análise , Animais , Digestão , Comportamento Alimentar , Coelhos , Desmame
14.
Anim Microbiome ; 3(1): 6, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33499980

RESUMO

BACKGROUND: Relationships between microbial composition and steatosis are being extensively studied in mammals, and causal relations have been evidenced. In migratory birds the liver can transiently store lipids during pre-migratory and migratory phases, but little is known about the implications of the digestive microbiota in those mechanisms. The Landaise greylag goose (Anser anser) is a good model to study steatosis in migratory birds as it is domesticated, but is still, from a genetic point of view, close to its wild migratory ancestor. It also has a great ingestion capacity and a good predisposition for hepatic steatosis, whether spontaneous or induced by conventional overfeeding. The conventional (overfeeding) and alternative (spontaneous steatosis induction) systems differ considerably in duration and feed intake level and previous studies have shown that aptitudes to spontaneous steatosis are very variable. The present study thus aimed to address two issues: (i) evaluate whether microbial composition differs with steatosis-inducing mode; (ii) elucidate whether a digestive microbial signature could be associated with variable aptitudes to spontaneous liver steatosis. RESULTS: Performances, biochemical composition of the livers and microbiota differed considerably in response to steatosis stimulation. We namely identified the genus Romboutsia to be overrepresented in birds developing a spontaneous steatosis in comparison to those submitted to conventional overfeeding while the genera Ralstonia, Variovorax and Sphingomonas were underrepresented only in birds that did not develop a spontaneous steatosis compared to conventionally overfed ones, birds developing a spontaneous steatosis having intermediate values. Secondly, no overall differences in microbial composition were evidenced in association with variable aptitudes to spontaneous steatosis, although one OTU, belonging to the Lactobacillus genus, was overrepresented in birds having developed a spontaneous steatosis compared to those that had not. CONCLUSIONS: Our study is the first to evaluate the intestinal microbial composition in association with steatosis, whether spontaneous or induced by overfeeding, in geese. Steatosis induction modes were associated with distinct digestive microbial compositions. However, unlike what can be observed in mammals, no clear microbial signature associated with spontaneous steatosis level was identified.

15.
Microorganisms ; 9(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34576747

RESUMO

The bacterial consumption of viruses not been reported on as of yet even though bacteria feed on almost anything. Viruses are widely distributed but have no acknowledged active biocontrol. Viral biomass undoubtedly reintegrates trophic cycles; however, the mechanisms of this phase still remain unknown. 13C-labelled T4 phages monitor the increase of the density of the bacterial DNA concomitant with the decrease of plaque forming units. We used 12C T4 phages as a control. T4 phage disappearance in wastewater sludge was found to occur mainly through predation by Aeromonadacea. Phage consumption also favours significant in situ bacterial growth. Furthermore, an isolated strain of Aeromonas was observed to grow on T4 phages as sole the source of carbon, nitrogen, and phosphorus. Bacterial species are capable of consuming bacteriophages in situ, which is likely a widespread and underestimated type of biocontrol. This assay is anticipated as a starting point for harnessing the bacterial potential in limiting the diffusion of harmful viruses within environments such as in the gut or in water.

16.
Anaerobe ; 16(4): 396-401, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20417714

RESUMO

The archaeal community in the fermentative compartment and faeces of the cow and the rabbit were compared by analysis capillary electrophoresis single-stranded conformation polymorphism (CE-SSCP) profiles of 16S rRNA genes. Ruminal and faecal contents were sampled in five cows for three weeks. Hard and soft faeces were collected in 14 rabbits for three consecutive weeks and caecal contents were sampled in the third week. The archaeal community differed according to the host species (ANOSIM-R=0.53 and 0.72 respectively for the comparison of the fermentative compartments and faeces; P<0.001) and to the location within the digestive tract of both species (ANOSIM-R=0.37, 0.52 respectively for the cow and the rabbit; P<0.001). In both species, the archaeal community of the digestive tract was stable over weeks and varied very little between individual animals. The structure (NS) and the richness index (9.9+/-2.7, 10.1+/-3.1 respectively, NS) of the archaeal community were similar for the caecal content and the soft faeces which permitted to use the latter as a representative indicator.


Assuntos
Archaea/classificação , Archaea/genética , Biodiversidade , Ceco/microbiologia , Fezes/microbiologia , Animais , Bovinos , DNA Arqueal/genética , DNA Ribossômico/genética , Eletroforese Capilar , Polimorfismo Conformacional de Fita Simples , RNA Ribossômico 16S/genética , Coelhos
17.
Anaerobe ; 16(2): 61-5, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19460451

RESUMO

This work aimed to study the stability over time of the bacterial community in caecum and faeces of the rabbit (diversity index and structure) without experimental disturbance and to evaluate its relationships with environmental parameters. Soft and hard faeces of 14 rabbits were sampled for 5 weeks while caecal content was sampled on the 3rd week (by surgery) and the 5th week (at slaughter). Bacterial communities were assessed by studying CE-SSCP profiles of 16S rRNA genes fragments. Redox potential, pH, NH3-N concentration and volatile fatty acid concentrations were measured in the caecum. Data showed that bacterial communities of soft and hard faeces barely differed from that of the caecum (ANOSIM-R<0.25; p<0.05). Without disturbance, the bacterial communities of faeces were stable over time (ANOSIM-R<0.25; p<0.001). However, the bacterial communities of caecum and faeces were affected by the surgery (ANOSIM-R=0.22-0.33; p<0.001). The caecal content was an acidic (pH=6.03+/-0.33) and an anaerobic environment (redox potential=-160+/-43 mV). Only the redox potential was correlated with the diversity index of the bacterial community of the caecum (R(2)=0.35; p<0.05) and no environmental parameters were correlated to its structure.


Assuntos
Bactérias/classificação , Biodiversidade , Ceco/microbiologia , Fezes/microbiologia , Metagenoma , Polimorfismo Conformacional de Fita Simples , Amônia/análise , Animais , Bactérias/genética , Bactérias/metabolismo , Ceco/química , Eletroforese Capilar , Ácidos Graxos Voláteis/análise , Fezes/química , Concentração de Íons de Hidrogênio , Oxirredução , Coelhos
18.
Microorganisms ; 8(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066283

RESUMO

Antibiotic resistance of microbes thriving in the animal gut is a growing concern for public health as it may serve as a hidden reservoir for antibiotic resistance genes (ARGs). We compared 16 control piglets to 24 piglets fed for 3 weeks with S1 or S2 fecal suspensions from two sows that were not exposed to antibiotics for at least 6 months: the first suspension decreased the erythromycin resistance gene ermB and the aminoglycoside phosphotransferase gene conferring resistance to kanamycine (aphA3), while the second decreased the tetracycline resistance gene tetL, with an unexpected increase in ARGs. Using 16S RNA sequencing, we identified microbial species that are likely to carry ARGs, such as the lincosamide nucleotidyltransferase lnuB, the cephalosporinase cepA, and the tetracycline resistance genes tetG and tetM, as well as microbes that never co-exist with the tetracycline resistance gene tetQ, the erythromycin resistance gene ermG and aphA3. Since 73% of the microbes detected in the sows were not detected in the piglets at weaning, a neutral model was applied to estimate whether a microbial species is more important than chance would predict. This model confirmed that force-feeding modifies the dynamics of gut colonization. In conclusion, early inoculation of gut microbes is an interesting possibility to stimulate gut microbiota towards a desirable state in pig production, but more work is needed to be able to predict which communities should be used.

19.
Gut Microbes ; 11(5): 1268-1286, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32352849

RESUMO

In suckling mammals, the onset of solid food ingestion is coincident with the maturation of the gut barrier. This ontogenic process is driven by the colonization of the intestine by the microbiota. However, the mechanisms underlying the microbial regulation of the intestinal development in early life are not fully understood. Here, we studied the co-maturation of the microbiota (composition and metabolic activity) and of the gut barrier at the suckling-to-weaning transition by using a combination of experiments in vivo (suckling rabbit model), ex vivo (Ussing chambers) and in vitro (epithelial cell lines and organoids). The microbiota composition, its metabolic activity, para-cellular epithelial permeability and the gene expression of key components of the gut barrier shifted sharply at the onset of solid food ingestion in vivo, despite milk was still predominant in the diet at that time. We found that cecal content sterile supernatant (i.e. containing a mixture of metabolites) obtained after the onset of solid food ingestion accelerated the formation of the epithelial barrier in Caco-2 cells in vitro and our results suggested that these effects were driven by the bacterial metabolite butyrate. Moreover, the treatment of organoids with cecal content sterile supernatant partially replicated in vitro the effects of solid food ingestion on the epithelial barrier in vivo. Altogether, our results show that the metabolites produced by the microbiota at the onset of solid food ingestion contribute to the maturation of the gut barrier at the suckling-to-weaning transition. Targeting the gut microbiota metabolic activity during this key developmental window might therefore be a promising strategy to promote intestinal homeostasis.


Assuntos
Bactérias/metabolismo , Ceco/metabolismo , Ingestão de Alimentos , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Desmame , Animais , Animais Lactentes , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Células CACO-2 , Ceco/microbiologia , Regulação da Expressão Gênica , Genes de RNAr , Humanos , Mucosa Intestinal/microbiologia , Masculino , Leite , Organoides , Permeabilidade , RNA Ribossômico 16S/genética , Coelhos , Transcriptoma
20.
Pathogens ; 9(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365731

RESUMO

Since 2018, when a process hygiene criterion for Campylobacter in broilers at the slaughterhouse was implemented across Europe, efforts to reduce Campylobacter at farm level have increased. Despite numerous studies aiming to reduce Campylobacter colonization in broilers, no efficient control strategy has been identified so far. The present work assessed first the efficacy of a commercial litter treatment to reduce Campylobacter colonization in broilers during two in-vivo trials and second, its impact on cecal microbiota. The treatment does not affect broiler growth and no effect on Campylobacter counts was observed during the in-vivo trials. Nevertheless, cecal microbiota were affected by the treatment. Alpha and beta diversity were significantly different for the control and litter-treated groups on day 35. In addition, several taxa were identified as significantly associated with the different experimental groups. Further work is needed to find a suitable control measure combining different strategies in order to reduce Campylobacter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA