Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 19(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205180

RESUMO

Three dermacozines, dermacozines N-P (1-3), were isolated from the piezotolerant Actinomycete strain Dermacoccus abyssi MT 1.1T, which was isolated from a Mariana Trench sediment in 2006. Herein, we report the elucidation of their structures using a combination of 1D/2D NMR, LC-HRESI-MSn, UV-Visible, and IR spectroscopy. Further confirmation of the structures was achieved through the analysis of data from density functional theory (DFT)-UV-Visible spectral calculations and statistical analysis such as two tailed t-test, linear regression-, and multiple linear regression analysis applied to either solely experimental or to experimental and calculated 13C-NMR chemical shift data. Dermacozine N (1) bears a novel linear pentacyclic phenoxazine framework that has never been reported as a natural product. Dermacozine O (2) is a constitutional isomer of the known dermacozine F while dermacozine P (3) is 8-benzoyl-6-carbamoylphenazine-1-carboxylic acid. Dermacozine N (1) is unique among phenoxazines due to its near infrared (NIR) absorption maxima, which would make this compound an excellent candidate for research in biosensing chemistry, photodynamic therapy (PDT), opto-electronic applications, and metabolic mapping at the cellular level. Furthermore, dermacozine N (1) possesses weak cytotoxic activity against melanoma (A2058) and hepatocellular carcinoma cells (HepG2) with IC50 values of 51 and 38 µM, respectively.


Assuntos
Actinobacteria/química , Sedimentos Geológicos/microbiologia , Fenazinas/química , Fenazinas/isolamento & purificação , Processos Fotoquímicos , Luz , Espectroscopia de Ressonância Magnética , Análise de Regressão , Espectrofotometria/métodos
2.
Antonie Van Leeuwenhoek ; 113(7): 875-887, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32130598

RESUMO

Humanity faces great challenges, such as the rise of bacterial antibiotic resistance and cancer incidence. Thus, the discovery of novel therapeutics from underexplored environments, such as marine habitats, is fundamental. In this study, twelve strains from the phylum Firmicutes and thirty-four strains from the phylum Proteobacteria, isolated from marine sponges of the Erylus genus, collected in Portuguese waters, were tested for bioactivities and the secondary metabolites were characterised. Bioactivity screenings comprised antimicrobial, anti-fungal, anti-parasitic and anti-cancer assays. Selected bioactive extracts were further analysed for already described molecules through high performance liquid chromatography and mass spectrometry. Several bioactivities were observed against the fungus Aspergillusfumigatus, the bacteria (methicillin-resistant Staphylococcus aureus and Escherichia coli), the human liver cancer cell line HepG2 and the parasite Trypanosoma cruzi. Medium scale-up volume extracts confirmed anti-fungal activity by strains Proteus mirabilis #118_13 and Proteus sp. (JX006497) strain #118_20. Anti-parasitic activity was also confirmed in Enterococcus faecalis strain #118_3. Moreover, P. mirabilis #118_13 showed bioactivity in human melanoma cell line A2058 and the human hepatocellular carcinoma cell line HepG2. The dereplication of bioactive extracts showed the existence of a variety of secondary metabolites, with some unidentifiable molecules. This work shows that bacterial communities of sponges are indeed good candidates for drug discovery and, as far as we know, we describe anti-parasitic activity of a strain of E. faecalis and the presence of diketopiperazines in Proteus genus for the first time.


Assuntos
Bactérias/metabolismo , Dicetopiperazinas/isolamento & purificação , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacologia , Poríferos/microbiologia , Animais , Antibacterianos/isolamento & purificação , Antifúngicos , Antineoplásicos/farmacologia , Antiparasitários/farmacologia , Bactérias/classificação , Linhagem Celular Tumoral , Dicetopiperazinas/química , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Firmicutes/classificação , Firmicutes/metabolismo , Fungos/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Neoplasias Hepáticas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simbiose , Trypanosoma cruzi/efeitos dos fármacos
3.
Org Biomol Chem ; 17(11): 2954-2971, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30806648

RESUMO

Bioassay-guided isolation based on the antifungal activity of a culture broth of the marine-derived actinomycete Streptomyces caniferus CA-271066 led to the discovery of new 36-membered polyol macrolides, caniferolides A-D (1-4). Their connectivity was determined by spectroscopic methods including ESITOF-MS and 1D/2D NMR. The relative stereochemistry of each stereocluster in these compounds was established using NOE analysis, the universal database method and J-based configuration analysis, further assisted by comparisons with NMR data of structurally related macrolides. Genome sequencing followed by detailed bioinformatics analysis led to the identification of the corresponding biosynthetic gene cluster and allowed the prediction of the stereochemical outcome of their biosynthesis, confirming the relative stereochemistry of each stereocluster already determined by NMR and establishing their stereochemical relationship, ultimately rendering the absolute configuration of all chiral centers. Furthermore, based on our results and already published data, it has been possible to derive the complete absolute configuration of the related macrolides PM100117 and PM100118, astolides A and B, and deplelides A and B. Caniferolides A-D have shown pronounced antifungal activity against Candida albicans and Aspergillus fumigatus alongside antiproliferative activity against five human tumoral cell lines.


Assuntos
Vias Biossintéticas/genética , Macrolídeos/química , Família Multigênica , Streptomyces/química , Streptomyces/genética , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Macrolídeos/isolamento & purificação , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Polímeros/química , Polímeros/isolamento & purificação , Polímeros/farmacologia , Estereoisomerismo , Streptomyces/metabolismo
4.
J Nat Prod ; 82(5): 1354-1360, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31017788

RESUMO

In the search for bioactive marine natural products from zoantharians of the Tropical Eastern Pacific, four new tyrosine dipeptides, named valdiviamides A-D (1-4), were isolated from Antipathozoanthus hickmani, and two new tyramine derivatives, 5 and 6, from Parazoanthus darwini. The phenols of all six tyrosine derivatives are substituted by bromine and/or iodine atoms at the ortho positions of the hydroxyl. The planar structures of these aromatic alkaloids were elucidated from 1D and 2D NMR experiments in combination with HRESIMS data, and the absolute configurations of 1-4 were deduced from comparison between experimental and calculated electronic circular dichroism spectra. As halogenated tyrosine derivatives could represent chemotaxonomic markers of these genera, we decided to undertake the first chemical investigation of another species, Terrazoanthus cf. patagonichus. As expected, no halogenated metabolite was evidenced in the species, but we report herein the identification of two new zoanthoxanthin derivatives, named zoamides E (7) and F (8), from this species. Antimicrobial and cytotoxicity bioassays revealed that valdiviamide B (2) displayed moderate cytotoxicity against the HepG2 cell line with an IC50 value of 7.8 µM.


Assuntos
Antozoários/química , Tirosina/análogos & derivados , Tirosina/farmacologia , Animais , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Dicroísmo Circular , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oceano Pacífico , Tirosina/química
5.
Mar Drugs ; 17(7)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315183

RESUMO

Two new spongian furanoditerpenes, 3ß-hydroxyspongia-13(16),14-dien-2-one (1) and 19-dehydroxy-spongian diterpene 17 (2), along with five known terpenes, the spongian furanoditerpenes 9-nor-3-hydroxyspongia-3,13(16),14-trien-2-one (3), 3ß,19 dihydroxyspongia-13(16),14-dien-2-one (epispongiadiol) (4) and spongian diterpene 17 (5), the furanoditerpene ambliol C (6), and the sesterterpene scalarin (7), were isolated from the methanolic extract of the sponge Spongia tubulifera, collected in the Mexican Caribbean. The planar structures of the new compounds were elucidated by 1D/2D NMR and IR spectroscopic analysis, high resolution electrospray mass spectrometry (HRESIMS), and comparison of their spectral data with those reported in the literature. Absolute configurations were determined by comparison of the experimental electronic circular dichroism (ECD) spectrum with those calculated by time-dependent density functional theory (TDDFT). Compounds 1, 4, and 6 displayed weak cytotoxic activity against different human tumour cell lines.


Assuntos
Diterpenos/farmacologia , Toxinas Marinhas/farmacologia , Poríferos/química , Animais , Região do Caribe , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Toxinas Marinhas/isolamento & purificação , México , Estrutura Molecular
6.
Mar Drugs ; 18(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888028

RESUMO

As part of our continuing efforts to discover new bioactive compounds from microbial sources, a reinvestigation of extracts of scaled-up cultures of the marine-derived Streptomyces sp. strain CA-271078 resulted in the isolation and structural elucidation of four new napyradiomycins (1-3, 5). The known napyradiomycin SC (4), whose structural details had not been previously described in detail, and another ten related known compounds (6-15). The structures of the new napyradiomycins were characterized by HRMS and 1D- and 2D-NMR spectroscopies and their relative configurations were established through a combination of molecular modelling with nOe and coupling constants NMR analysis. The absolute configuration of each compound is also proposed based on biosynthetic arguments and the comparison of specific rotation data with those of related compounds. Among the new compounds, 1 was determined to be the first non-halogenated member of napyradiomycin A series containing a functionalized prenyl side chain, while 2-4 harbor in their structures the characteristic chloro-cyclohexane ring of the napyradiomycin B series. Remarkably, compound 5 displays an unprecedented 14-membered cyclic ether ring between the prenyl side chain and the chromophore, thus representing the first member of a new class of napyradiomycins that we have designated as napyradiomycin D1. Anti-infective and cytotoxic properties for all isolated compounds were evaluated against a set of pathogenic microorganisms and the HepG2 cell line, respectively. Among the new compounds, napyradiomycin D1 exhibited significant growth-inhibitory activity against methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, and HepG2.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Naftoquinonas/farmacologia , Streptomyces/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Naftoquinonas/química , Naftoquinonas/isolamento & purificação
7.
Mar Drugs ; 17(7)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252576

RESUMO

Due to the unique biodiversity and the physical-chemical properties of their environment, marine microorganisms have evolved defense and signaling compounds that often have no equivalent in terrestrial habitats. The aim of this study was to screen extracts of the dinoflagellate Amphidinium carterae for possible bioactivities (i.e., anticancer, anti-inflammatory, anti-diabetes, antibacterial and antifungal properties) and identify bioactive compounds. Anticancer activity was evaluated on human lung adenocarcinoma (A549), human skin melanoma (A2058), human hepatocellular carcinoma (HepG2), human breast adenocarcinoma (MCF7) and human pancreas carcinoma (MiaPaca-2) cell lines. Antimicrobial activities were evaluated against Gram-positive bacteria (Staphylococcus aureus MRSA and MSSA), Gram-negative bacteria (i.e., Escherichia coli and Klebsiella pneumoniae), Mycobacterium tuberculosis and the fungus Aspergillus fumigatus. The results indicated moderate biological activities against all the cancer cells lines and microorganisms tested. Bioassay-guided fractionation assisted by HRMS analysis allowed the detection of one new and two known amphidinols that are potentially responsible for the antifungal and cytotoxic activities observed. Further isolation, purification and structural elucidation led to a new amphidinol, named amphidinol 22. The planar structure of the new compound was determined by analysis of its HRMS and 1D and 2D NMR spectra. Its biological activity was evaluated, and it displayed both anticancer and antifungal activities.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Dinoflagellida/química , Policetídeos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Aspergillus fumigatus/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Relação Estrutura-Atividade
8.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652666

RESUMO

Trichothecene mycotoxins are recognized as highly bioactive compounds that can be used in the design of new useful bioactive molecules. In Trichoderma brevicompactum, the first specific step in trichothecene biosynthesis is carried out by a terpene cyclase, trichodiene synthase, that catalyzes the conversion of farnesyl diphosphate to trichodiene and is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin, a trichothecene-type toxin, which is a valuable tool in preparing new molecules with a trichothecene skeleton. In this work, we developed the hemisynthesis of trichodermin and trichodermol derivatives in order to evaluate their antimicrobial and cytotoxic activities and to study the chemo-modulation of their bioactivity. Some derivatives with a short chain at the C-4 position displayed selective antimicrobial activity against Candida albicans and they showed MIC values similar to those displayed by trichodermin. It is important to highlight the cytotoxic selectivity observed for compounds 9, 13, and 15, which presented average IC50 values of 2 µg/mL and were cytotoxic against tumorigenic cell line MCF-7 (breast carcinoma) and not against Fa2N4 (non-tumoral immortalized human hepatocytes).


Assuntos
Tricodermina/análogos & derivados , Animais , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Linhagem Celular , Feminino , Hepatócitos/efeitos dos fármacos , Humanos , Células MCF-7 , Micotoxinas/farmacologia , Coelhos , Trichoderma/enzimologia , Trichoderma/genética , Trichoderma/metabolismo , Tricodermina/síntese química , Tricodermina/química , Tricodermina/farmacologia
9.
J Nat Prod ; 81(10): 2301-2305, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30360624

RESUMO

The first chemical study of the marine sponge Callyspongia cf. californica widely distributed along the coasts of the Tropical Eastern Pacific led to the identification of a new family of amphiphilic derivatives called callyspongidic acids. The four isolated metabolites 1-4 feature a hydrophilic diacid end opposed to both an aromatic moiety and a long alkyl chain. They were evaluated against a panel of pathogenic microbes and seven tumoral cell lines, displaying moderate inhibitory properties against the A2058 melanoma cell line with an IC50 of 3.2 µM for callyspongidic acid C13:0 (2).


Assuntos
Callyspongia/química , Poli-Inos/farmacologia , Animais , Antibióticos Antineoplásicos/isolamento & purificação , Antibióticos Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Fungos/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oceano Pacífico , Poli-Inos/isolamento & purificação
10.
J Nat Prod ; 81(6): 1488-1492, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29792325

RESUMO

Two new epimeric dihalogenated diaporthins, (9 R *)-8-methyl-9,11-dichlorodiaporthin (2) and (9 S *)-8-methyl-9,11-dichlorodiaporthin (3), have been isolated from the soil fungus Hamigera fusca NRRL 35721 alongside the known regioisomeric isocoumarin 8-methyl-11,11-dichlorodiaporthin (1). Their structures were elucidated by high-resolution mass spectrometry and NMR spectroscopy combined with molecular modeling. Compounds 1-3 are the first isocoumarins and the first halogenated metabolites ever reported from the Hamigera genus. The new compounds 2 and 3 display a non-geminal aliphatic dichlorination pattern unprecedented among known fungal dihalogenated aromatic polyketides. A bifunctional methyltransferase/aliphatic halogenase flavoenzyme is proposed to be involved in the biosynthesis of dichlorinated diaporthins 1-3. These metabolites are weakly cytotoxic.


Assuntos
Fungos/química , Pironas/química , Halogenação , Isocumarinas/química , Espectroscopia de Ressonância Magnética/métodos , Policetídeos/química
11.
Mar Drugs ; 16(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297652

RESUMO

Fractionation of the bioactive extract of a culture of the marine derived actinomycete Streptomyces cyaneofuscatus M-157 led to the isolation of the known 3-hydroxyquinaldic acid (4), its amide (5) and three new derivatives (1⁻3) containing different amino acid residues. The structures of the new molecules (1⁻3), including their absolute configuration, were determined by the analysis of their ESI-TOF MS and one-dimensional (1D) and two-dimensional (2D) NMR spectra and advanced Marfey's analysis of their hydrolyzation products. Compound 3 spontaneously dimerized in solution to give the disulfide derivative 6. Unfortunately, none of the new compounds isolated confirmed the antimicrobial activity found in the bacterial extract, perhaps indicating that such antibacterial activity might be due to presence in the extract at the trace level of larger bioactive 3-hydroxyquinaldic acid derivatives from which compounds 1⁻3 are biosynthetic precursors. Cytotoxicity tests confirmed the moderate and weak IC50 values of 15.6 and 51.5 µM for compounds 5 and 1, respectively.


Assuntos
Actinobacteria/química , Antibacterianos/química , Organismos Aquáticos/química , Ácido Cinurênico/análogos & derivados , Streptomyces/química , Ácido Cinurênico/química , Espectroscopia de Ressonância Magnética/métodos , Testes de Sensibilidade Microbiana/métodos
12.
Planta Med ; 83(6): 545-550, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27706529

RESUMO

During a high-throughput screening program focused on the discovery and characterization of new antifungal compounds, a total of 8320 extracts from Fundacion MEDINA's collection were screened against a panel of 6 fungal parasitic strains, namely Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis, Candida albicans, and Aspergillus fumigatus. A total of 127 extracts displayed antifungal properties and, after LC/MS dereplication, 10 were selected for further fractionation. Bioassay-guided fractionation from a 1-L fermentation of one of these extracts, belonging to the fungus Chaetopsina sp., led to the isolation of linoleyl sulphate (1), linolenyl sulphate (2), and oleyl sulphate (3) as the compounds responsible for the antifungal activity. These molecules were previously described as synthetic products with the ability to produce the allosteric inhibition of soybean lipoxygenase and human lipoxygenase.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/química , Aspergillus fumigatus/efeitos dos fármacos , Candida/efeitos dos fármacos , Lauraceae/microbiologia , Sulfatos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Ascomicetos/isolamento & purificação , Humanos , Estrutura Molecular , Folhas de Planta/microbiologia , Sulfatos/química , Sulfatos/isolamento & purificação
13.
Mar Drugs ; 15(7)2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28672858

RESUMO

The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866) led to the identification of seven new steroidal saponins named poecillastrosides A-G (1-7). All saponins feature an oxidized methyl at C-18 into a primary alcohol or a carboxylic acid. While poecillastrosides A-D (1-4) all contain an exo double bond at C-24 of the side-chain and two osidic residues connected at O-2', poecillastrosides E-G (5-7) are characterized by a cyclopropane on the side-chain and a connection at O-3' between both sugar units. The chemical structures were elucidated through extensive spectroscopic analysis (High-Resolution Mass Spectrometry (HRESIMS), 1D and 2D NMR) and the absolute configurations of the sugar residues were assigned after acidic hydrolysis and cysteine derivatization followed by LC-HRMS analyses. Poecillastrosides D and E, bearing a carboxylic acid at C-18, were shown to exhibit antifungal activity against Aspergillus fumigatus.


Assuntos
Poríferos/metabolismo , Saponinas/química , Animais , Estrutura Molecular , Poríferos/química , Saponinas/metabolismo
14.
Int J Antimicrob Agents ; 63(3): 107092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242251

RESUMO

OBJECTIVES: New drugs are required to treat neglected diseases caused by trypanosomatid parasites such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi. An Achilles' heel of these parasites is their heme auxotrophy; they have an absolute dependence on scavenging this molecule from the host, and trypanosomatid HRG heme transporters (TrypHRG) play an important role in this process. As these proteins are essential for the parasites and have low similarity with their human orthologue, they have been proposed as attractive therapeutic targets. Here, we have developed two yeast-based assays that allow an inexpensive high-throughput screening of TrypHRG inhibitors within a cellular context. METHODS: We first assessed that Leishmania major, Leishmania donovani and T. brucei HRG proteins were heterologously expressed in the digestive vacuole membrane of a mutant heme auxotrophic yeast strain. Here, TrypHRG imports hemoglobinderived heme into the cytosol, allowing mutant yeast to grow in the presence of low hemoglobin concentrations and promoting the activity of hemeproteins such as catalase, which was used as a reporter of cytosolic heme levels. RESULTS: In the presence of a TrypHRG inhibitor, both catalase activity (test 1) and yeast growth (test 2) were diminished, being easily monitored. The assays were then tested on a pilot scale for HTS purposes using a collection of repurposing drugs and food antioxidants. Some of the TrypHRG inhibitors identified in yeast presented strong trypanocidal and leishmanicidal activity in the submicromolar range, proving the potential of this approach. CONCLUSIONS: Cumulatively, it was shown that the inhibition bioassays developed were robust and applicable to large-scale HTS.


Assuntos
Leishmania , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Catalase , Bioensaio , Heme
15.
Sci Adv ; 10(11): eadj6406, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489355

RESUMO

There is a compelling need to find drugs active against Mycobacterium tuberculosis (Mtb). 4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme in Mtb that has attracted interest as a potential drug target. We optimized a PptT assay, used it to screen 422,740 compounds, and identified raltitrexed, an antineoplastic antimetabolite, as the most potent PptT inhibitor yet reported. While trying unsuccessfully to improve raltitrexed's ability to kill Mtb and remove its ability to kill human cells, we learned three lessons that may help others developing antibiotics. First, binding of raltitrexed substantially changed the configuration of the PptT active site, complicating molecular modeling of analogs based on the unliganded crystal structure or the structure of cocrystals with inhibitors of another class. Second, minor changes in the raltitrexed molecule changed its target in Mtb from PptT to dihydrofolate reductase (DHFR). Third, the structure-activity relationship for over 800 raltitrexed analogs only became interpretable when we quantified and characterized the compounds' intrabacterial accumulation and transformation.


Assuntos
Mycobacterium tuberculosis , Neoplasias , Quinazolinas , Tiofenos , Transferases (Outros Grupos de Fosfato Substituídos) , Humanos , Mycobacterium tuberculosis/metabolismo , Timidilato Sintase/metabolismo , Proteínas de Bactérias/metabolismo
16.
J Bioenerg Biomembr ; 45(1-2): 153-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23180140

RESUMO

The development of new anti-neoplastic drugs is a key issue for cancer chemotherapy due to the reality that, most likely, certain cancer cells are resistant to current chemotherapy. The past two decades have witnessed tremendous advances in our understanding of the pathogenesis of cancer. These advances have allowed identification new targets as oncogenes, tumor supressor genes and the possible implication of the mitochondria (Fulda et al. Nat Rev Drug Discov 9:447-464, 2010). Annonaceous Acetogenins (ACGs) have been described as the most potent inhibitors of the respiratory chain because of their interaction with mitochondrial Complex I (Degli Esposti and Ghelli Biochim Biophys Acta 1187:116-120, 1994; Zafra-Polo et al. Phytochemistry 42:253-271, 1996; Miyoshi et al. Biochim Biophys Acta 1365:443-452, 1998; Tormo et al. Arch Biochem Biophys 369:119-126, 1999; Motoyama et al. Bioorg Med Chem Lett 12:2089-2092, 2002). To explore a possible application of natural products from Annonaceous plants to cancer treatment, we have selected four bis-tetrahydrofuranic ACGs, three from Annona cherimolia (cherimolin-1, motrilin and laherradurin) and one from Rollinia mucosa (rollinianstatin-1) in order to fully describe their mechanisms responsible within the cell (Fig. 1). In this study, using a hepato-carcinoma cell line (HepG2) as a model, we showed that the bis-THF ACGs caused cell death through the induction of the apoptotic mitochondrial pathway. Their potency and behavior were compared with the classical mitochondrial respiratory chain Complex I inhibitor rotenone in every apoptotic pathway step.


Assuntos
Acetogeninas/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/enzimologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias Hepáticas/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Complexo I de Transporte de Elétrons/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/dietoterapia , Neoplasias Hepáticas/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo
17.
J Bioenerg Biomembr ; 45(1-2): 145-52, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23180141

RESUMO

Annonaceous acetogenins are potent cytotoxic agents against tumor cell lines as well as potent inhibitors of mitochondrial Complex I (Degli Esposti and Ghelli Biochim Biophys Acta 1187:116-120, 1994; Degli Esposti et al. Biochem J 301(Pt 1):161-167, 1994; Tormo et al. Arch Biochem Biophys 369:119-126, 1999). Eighteen different ACGs belonging to seven structural sub-families were tested against six tumor and two non tumor cell lines in a MTT cytotoxicity assay to evaluate the correlation between mitochondrial Complex I inhibition and cytotoxic activity potency and selectivity. The results showed a substantial heterogeneity in potency and selectivity among the different compounds tested, although no clear overall structure-activity relationships could be established. To further characterize the biological activity of these compounds, four ACGs were selected based on their inhibition binding sites to Complex I, to evaluate their cytotoxic activity over a 15-minute to 48-hour period using a more sensitive time-course LDH cytotoxicity assay. Our results indicate that, although all of the ACGs were highly cytotoxic in HepG2 cell lines at 24 h, each sub-class behaves rather differently at shorter times. Perhaps other aspects related to how these compounds reach or bind to their target sites, or differences in their ability to cross the cell and/or the mitochondrial membranes, could help explain their different activities. This different behavior between ACGs may provide new clues for a better understanding of their potential antitumor properties.


Assuntos
Acetogeninas/farmacologia , Citotoxinas/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Mitocôndrias/enzimologia , Proteínas Mitocondriais/antagonistas & inibidores , Antineoplásicos/farmacologia , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/metabolismo , Células Hep G2 , Humanos , Proteínas Mitocondriais/metabolismo , Fatores de Tempo
18.
Mar Drugs ; 11(5): 1477-89, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23648552

RESUMO

The chemical investigation of the recently described Mediterranean Homoscleromorpha sponge Oscarella balibaloi revealed an original family of five closely related glucosylated sesterterpenes 1-4, named balibalosides. Their structure elucidation was mainly inferred from NMR and HRMS data analyses. Balibalosides differ by the pattern of acetyl substitutions on the three sugar residues linked to the same aglycone sesterterpenoid core. From a biosynthetic perspective, these compounds may represent intermediates in the pathways leading to more complex sesterterpenes frequently found in Dictyoceratida, a sponge Order belonging to Demospongiae, a clade which is phylogenetically distinct from the Homoscleromorpha. While steroid and triterpenoid saponins were already well known from marine sponges, balibalosides are the first examples of glycosilated sesterterpenes.


Assuntos
Poríferos/química , Sesterterpenos/química , Animais , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Mar Mediterrâneo , Sesterterpenos/isolamento & purificação
19.
SLAS Technol ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37898289

RESUMO

Natural Products (NPs) are one of the main sources for drug discovery. Many clinical drugs are NPs or NP-inspired compounds, and recently discovered New Chemical Entities (NCEs) of NPs are emerging as promising new drugs. High-Throughput Screening (HTS) of large sample sets or libraries has grown to be vital for the drug discovery field. Industrial-scale HTS of NP libraries can be limited due to the difficulties entailed in working with tiny extract volumes and the variability in viscosity of NP extracts. For these reasons, the implementation of new technologies to miniaturize different reagent volumes grows to be fundamental. Since Acoustic Droplet Ejection (ADE) emerged as a helpful tool in HTS campaigns for the transference of compound libraries. The aim of this work was to test the effectiveness of ADE for the dispensation of NP extract libraries in cell-based HTS assays.

20.
Antioxidants (Basel) ; 12(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37507999

RESUMO

Cancer is considered one of the main causes of human death worldwide, being characterized by an alteration of the oxidative metabolism. Many natural compounds from plant origin with anti-tumor attributes have been described. Among them, capsaicin, which is the molecule responsible for the pungency in hot pepper fruits, has been reported to show antioxidant, anti-inflammatory, and analgesic activities, as well as anti-proliferative properties against cancer. Thus, in this work, the potential anti-proliferative activity of pepper (Capsicum annuum L.) fruits from diverse varieties with different capsaicin contents (California < Piquillo < Padrón < Alegría riojana) against several tumor cell lines (lung, melanoma, hepatoma, colon, breast, pancreas, and prostate) has been investigated. The results showed that the capsaicin content in pepper fruits did not correspond with their anti-proliferative activity against tumor cell lines. By contrast, the greatest activity was promoted by the pepper tissues which contained the lowest capsaicin amount. This indicates that other compounds different from capsaicin have this anti-tumor potentiality in pepper fruits. Based on this, green fruits from the Alegría riojana variety, which has negligible capsaicin levels, was used to study the effect on the oxidative and redox metabolism of tumor cell lines from liver (Hep-G2) and pancreas (MIA PaCa-2). Different parameters from both lines treated with crude pepper fruit extracts were determined including protein nitration and protein S-nitrosation (two post-translational modifications (PTMs) promoted by nitric oxide), the antioxidant capacity, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), among others. In addition, the activity of the NADPH-generating enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and NADP-isocitrate dehydrogenase (NADP-ICDH) was followed. Our data revealed that the treatment of both cell lines with pepper fruit extracts altered their antioxidant capacity, enhanced their catalase activity, and considerably reduced the activity of the NADPH-generating enzymes. As a consequence, less H2O2 and NADPH seem to be available to cells, thus avoiding cell proliferation and possibly triggering cell death in both cell lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA