Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098064

RESUMO

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Incerteza , Surtos de Doenças/prevenção & controle , Saúde Pública , Pandemias/prevenção & controle
2.
PLoS Med ; 21(4): e1004387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630802

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Estados Unidos/epidemiologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso de 80 Anos ou mais , Masculino
3.
PLoS Comput Biol ; 19(4): e1010424, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104528

RESUMO

The mosquito Aedes aegypti is the vector of a number of medically-important viruses, including dengue virus, yellow fever virus, chikungunya virus, and Zika virus, and as such vector control is a key approach to managing the diseases they cause. Understanding the impact of vector control on these diseases is aided by first understanding its impact on Ae. aegypti population dynamics. A number of detail-rich models have been developed to couple the dynamics of the immature and adult stages of Ae. aegypti. The numerous assumptions of these models enable them to realistically characterize impacts of mosquito control, but they also constrain the ability of such models to reproduce empirical patterns that do not conform to the models' behavior. In contrast, statistical models afford sufficient flexibility to extract nuanced signals from noisy data, yet they have limited ability to make predictions about impacts of mosquito control on disease caused by pathogens that the mosquitoes transmit without extensive data on mosquitoes and disease. Here, we demonstrate how the differing strengths of mechanistic realism and statistical flexibility can be fused into a single model. Our analysis utilizes data from 176,352 household-level Ae. aegypti aspirator collections conducted during 1999-2011 in Iquitos, Peru. The key step in our approach is to calibrate a single parameter of the model to spatio-temporal abundance patterns predicted by a generalized additive model (GAM). In effect, this calibrated parameter absorbs residual variation in the abundance time-series not captured by other features of the mechanistic model. We then used this calibrated parameter and the literature-derived parameters in the agent-based model to explore Ae. aegypti population dynamics and the impact of insecticide spraying to kill adult mosquitoes. The baseline abundance predicted by the agent-based model closely matched that predicted by the GAM. Following spraying, the agent-based model predicted that mosquito abundance rebounds within about two months, commensurate with recent experimental data from Iquitos. Our approach was able to accurately reproduce abundance patterns in Iquitos and produce a realistic response to adulticide spraying, while retaining sufficient flexibility to be applied across a range of settings.


Assuntos
Aedes , Vírus Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Animais , Mosquitos Vetores/fisiologia , Dinâmica Populacional , Vírus da Febre Amarela , Dengue/epidemiologia
4.
Proc Natl Acad Sci U S A ; 117(36): 22597-22602, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32826332

RESUMO

By March 2020, COVID-19 led to thousands of deaths and disrupted economic activity worldwide. As a result of narrow case definitions and limited capacity for testing, the number of unobserved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections during its initial invasion of the United States remains unknown. We developed an approach for estimating the number of unobserved infections based on data that are commonly available shortly after the emergence of a new infectious disease. The logic of our approach is, in essence, that there are bounds on the amount of exponential growth of new infections that can occur during the first few weeks after imported cases start appearing. Applying that logic to data on imported cases and local deaths in the United States through 12 March, we estimated that 108,689 (95% posterior predictive interval [95% PPI]: 1,023 to 14,182,310) infections occurred in the United States by this date. By comparing the model's predictions of symptomatic infections with local cases reported over time, we obtained daily estimates of the proportion of symptomatic infections detected by surveillance. This revealed that detection of symptomatic infections decreased throughout February as exponential growth of infections outpaced increases in testing. Between 24 February and 12 March, we estimated an increase in detection of symptomatic infections, which was strongly correlated (median: 0.98; 95% PPI: 0.66 to 0.98) with increases in testing. These results suggest that testing was a major limiting factor in assessing the extent of SARS-CoV-2 transmission during its initial invasion of the United States.


Assuntos
Doenças Transmissíveis Emergentes/transmissão , Infecções por Coronavirus/transmissão , Modelos Teóricos , Pneumonia Viral/transmissão , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/epidemiologia , Infecções Comunitárias Adquiridas , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Humanos , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Vigilância em Saúde Pública , SARS-CoV-2 , Estados Unidos/epidemiologia
5.
PLoS Biol ; 17(1): e3000130, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668574

RESUMO

Epidemiological synergy between outbreaks of viruses transmitted by Aedes aegypti mosquitoes, such as chikungunya, dengue, and Zika viruses, has resulted in coinfection of humans with multiple viruses. Despite the potential impact on public health, we know only little about the occurrence and consequences of such coinfections. Here, we review the impact of coinfection on clinical disease in humans, discuss the possibility for co-transmission from mosquito to human, and describe a role for modeling transmission dynamics at various levels of co-transmission. Solving the mystery of virus coinfections will reveal whether they should be viewed as a serious concern for public health.


Assuntos
Arbovírus/patogenicidade , Coinfecção/epidemiologia , Saúde Pública/métodos , Aedes/virologia , Animais , Febre de Chikungunya/transmissão , Vírus Chikungunya , Coinfecção/metabolismo , Coinfecção/virologia , Dengue/transmissão , Vírus da Dengue , Surtos de Doenças , Humanos , Mosquitos Vetores/virologia , Zika virus , Infecção por Zika virus/transmissão
6.
Epidemiol Infect ; 150: e21, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35068403

RESUMO

Since the start of the coronavirus disease-2019 (COVID-19) pandemic, there has been interest in using wastewater monitoring as an approach for disease surveillance. A significant uncertainty that would improve the interpretation of wastewater monitoring data is the intensity and timing with which individuals shed RNA from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into wastewater. By combining wastewater and case surveillance data sets from a university campus during a period of heightened surveillance, we inferred that individual shedding of RNA into wastewater peaks on average 6 days (50% uncertainty interval (UI): 6-7; 95% UI: 4-8) following infection, and that wastewater measurements are highly overdispersed [negative binomial dispersion parameter, k = 0.39 (95% credible interval: 0.32-0.48)]. This limits the utility of wastewater surveillance as a leading indicator of secular trends in SARS-CoV-2 transmission during an epidemic, and implies that it could be most useful as an early warning of rising transmission in areas where transmission is low or clinical testing is delayed or of limited capacity.


Assuntos
COVID-19/transmissão , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Eliminação de Partículas Virais , Águas Residuárias/virologia , Fatores de Tempo
7.
PLoS Comput Biol ; 16(4): e1007743, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310958

RESUMO

Recent years have seen rising incidence of dengue and large outbreaks of Zika and chikungunya, which are all caused by viruses transmitted by Aedes aegypti mosquitoes. In most settings, the primary intervention against Aedes-transmitted viruses is vector control, such as indoor, ultra-low volume (ULV) spraying. Targeted indoor residual spraying (TIRS) has the potential to more effectively impact Aedes-borne diseases, but its implementation requires careful planning and evaluation. The optimal time to deploy these interventions and their relative epidemiological effects are, however, not well understood. We used an agent-based model of dengue virus transmission calibrated to data from Iquitos, Peru to assess the epidemiological effects of these interventions under differing strategies for deploying them. Specifically, we compared strategies where spray application was initiated when incidence rose above a threshold based on incidence in recent years to strategies where spraying occurred at the same time(s) each year. In the absence of spraying, the model predicted 361,000 infections [inter-quartile range (IQR): 347,000-383,000] in the period 2000-2010. The ULV strategy with the fewest median infections was spraying twice yearly, in March and October, which led to a median of 172,000 infections [IQR: 158,000-183,000], a 52% reduction from baseline. Compared to spraying once yearly in September, the best threshold-based strategy utilizing ULV had fewer median infections (254,000 vs. 261,000), but required more spraying (351 vs. 274 days). For TIRS, the best strategy was threshold-based, which led to the fewest infections of all strategies tested (9,900; [IQR: 8,720-11,400], a 94% reduction), and required fewer days spraying than the equivalent ULV strategy (280). Although spraying twice each year is likely to avert the most infections, our results indicate that a threshold-based strategy can become an alternative to better balance the translation of spraying effort into impact, particularly if used with a residual insecticide.


Assuntos
Biologia Computacional/métodos , Dengue/prevenção & controle , Controle de Mosquitos/métodos , Aedes/fisiologia , Animais , Simulação por Computador , Dengue/epidemiologia , Dengue/transmissão , Surtos de Doenças , Humanos , Incidência , Inseticidas , Modelos Teóricos , Mosquitos Vetores , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/transmissão
8.
Thorax ; 74(2): 185-193, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30121574

RESUMO

BACKGROUND: In January 2016, clinical TB guidance in the UK changed to no longer recommend screening contacts of non-pulmonary, non-laryngeal (ETB) index cases. However, no new evidence was cited for this change, and there is evidence that screening these contacts may be worthwhile. The objective of this study was to estimate the cost-effectiveness of screening contacts of adult ETB cases and adult pulmonary or laryngeal TB (PTB) cases in London, UK. METHODS: We carried out a cross-sectional analysis of data collected on TB index cases and contacts in the London TB register and an economic evaluation using a static model describing contact tracing outcomes. Incremental cost-effectiveness ratios (ICERs) were calculated using no screening as the baseline comparator. All adult TB cases (≥15 years old) in London from 2012 to 2015, and their contacts, were eligible (2465/5084 PTB and 2559/6090 ETB index cases were included). RESULTS: Assuming each contact with PTB infects one person/month, the ICER of screening contacts of ETB cases was £78 000/quality-adjusted life-years (QALY) (95% CI 39 000 to 140 000), and screening contacts of PTB cases was £30 000/QALY (95% CI 18 000 to 50 000). The ICER of screening contacts of ETB cases was £30 000/QALY if each contact with PTB infects 3.4 people/month. Limitations of this study include the use of self-reported symptomatic periods and lack of knowledge about onward transmission from PTB contacts. CONCLUSIONS: Screening contacts of ETB cases in London was almost certainly not cost-effective at any conventional willingness-to-pay threshold in England, supporting recent changes to National Institute for Health and Care Excellence national guidelines.


Assuntos
Busca de Comunicante/economia , Programas de Rastreamento/economia , Tuberculose Pulmonar/economia , Adulto , Análise Custo-Benefício , Estudos Transversais , Humanos , Londres , Guias de Prática Clínica como Assunto , Sensibilidade e Especificidade , Tuberculose Pulmonar/diagnóstico , Reino Unido
9.
Thorax ; 72(8): 736-745, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28389598

RESUMO

BACKGROUND: Contact tracing is a key element in England's 2015 collaborative TB strategy, although proposed indicators of successful contact tracing remain undescribed. METHODS: We conducted descriptive and multivariable analyses of contact tracing of TB cases in London between 1 July 2012 and 31 December 2015 using cohort review data from London's TB Register, identifying characteristics associated with improved indicators and yield. RESULTS: Of the pulmonary TB cases notified, 60% (2716/4561) had sufficient information for inclusion. Of these, 91% (2481/2716) had at least 1 contact (median: 4/case (IQR: 2-6)) identified, with 86% (10 251/11 981) of these contacts evaluated. 4.1% (177/4328), 1.3% (45/3421) and 0.70% (51/7264) of evaluated contacts of pulmonary smear-positive, pulmonary smear-negative and non-pulmonary cases, respectively, had active disease. Cases who were former prisoners or male were less likely to have at least one contact identified than those never imprisoned or female, respectively. Cases diagnosed at clinics with more directly observed therapy or social workers were more likely to have one or more contacts identified. Contacts screened at a different clinic to their index case or of male index cases were less likely to be evaluated than those screened at the same clinic or of women, respectively; yield of active disease was similar by sex. 10% (490/4850) of evaluated child contacts had latent TB infection. CONCLUSIONS: These are the first London-wide estimates of TB contact tracing indicators which are important for monitoring the strategy's success and informing risk assessment of index cases. Understanding why differences in indicators occur between groups could improve contact tracing outcomes.


Assuntos
Busca de Comunicante/métodos , Tuberculose/diagnóstico , Adolescente , Adulto , Criança , Feminino , Humanos , Incidência , Londres/epidemiologia , Masculino , Sistema de Registros , Estudos Retrospectivos , Teste Tuberculínico , Tuberculose/epidemiologia , Tuberculose/transmissão , Adulto Jovem
11.
Epidemics ; 47: 100759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452455

RESUMO

Over the past several years, the emergence of novel SARS-CoV-2 variants has led to multiple waves of increased COVID-19 incidence. When the Omicron variant emerged, there was considerable concern about its potential impact in the winter of 2021-2022 due to its increased fitness. However, there was also considerable uncertainty regarding its likely impact due to questions about its relative transmissibility, severity, and degree of immune escape. We sought to evaluate the ability of an agent-based model to forecast incidence in the context of this emerging pathogen variant. To project COVID-19 cases and deaths in Indiana, we calibrated our model to COVID-19 hospitalizations, deaths, and test-positivity rates through November 2021, and then projected COVID-19 incidence through April 2022 under four different scenarios that covered the plausible ranges of Omicron's severity, transmissibility, and degree of immune escape. Our initial projections from December 2021 through March 2022 indicated that under a pessimistic scenario with high disease severity, the peak in weekly COVID-19 deaths in Indiana would be larger than the previous peak in December 2020. However, retrospective analyses indicate that Omicron's severity was closer to the optimistic scenario, and even though cases and hospitalizations reached a new peak, fewer deaths occurred than during the previous peak. According to our results, Omicron's rapid spread was consistent with a combination of higher transmissibility and immune escape relative to earlier variants. Our updated projections starting in January 2022 accurately predicted that cases would peak in mid-January and decline rapidly over the next several months. The performance of our projections shows that following the emergence of a new pathogen variant, models can help quantify the potential range of outbreak magnitudes and trajectories. Agent-based models are particularly useful in these scenarios because they can efficiently track individual vaccination and infection histories with multiple variants with varying degrees of cross-protection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/imunologia , COVID-19/mortalidade , Indiana/epidemiologia , Incerteza , Previsões , Surtos de Doenças , Incidência
12.
PLoS Negl Trop Dis ; 17(1): e0011032, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36598896

RESUMO

[This corrects the article DOI: 10.1371/journal.pntd.0009603.].

13.
BMJ Glob Health ; 8(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37652566

RESUMO

New vector-control technologies to fight mosquito-borne diseases are urgently needed, the adoption of which depends on efficacy estimates from large-scale cluster-randomised trials (CRTs). The release of Wolbachia-infected mosquitoes is one promising strategy to curb dengue virus (DENV) transmission, and a recent CRT reported impressive reductions in dengue incidence following the release of these mosquitoes. Such trials can be affected by multiple sources of bias, however. We used mathematical models of DENV transmission during a CRT of Wolbachia-infected mosquitoes to explore three such biases: human movement, mosquito movement and coupled transmission dynamics between trial arms. We show that failure to account for each of these biases would lead to underestimated efficacy, and that the majority of this underestimation is due to a heretofore unrecognised bias caused by transmission coupling. Taken together, our findings suggest that Wolbachia-infected mosquitoes could be even more promising than the recent CRT suggested. By emphasising the importance of accounting for transmission coupling between arms, which requires a mathematical model, we highlight the key role that models can play in interpreting and extrapolating the results from trials of vector control interventions.


Assuntos
Doenças Transmitidas por Vetores , Animais , Humanos , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/transmissão , Culicidae , Viés , Modelos Biológicos
14.
Nat Commun ; 14(1): 6153, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788991

RESUMO

Approximately 10% of antimicrobials used by humans in low- and middle-income countries are estimated to be substandard or falsified. In addition to their negative impact on morbidity and mortality, they may also be important drivers of antimicrobial resistance. Despite such concerns, our understanding of this relationship remains rudimentary. Substandard and falsified medicines have the potential to either increase or decrease levels of resistance, and here we discuss a range of mechanisms that could drive these changes. Understanding these effects and their relative importance will require an improved understanding of how different drug exposures affect the emergence and spread of resistance and of how the percentage of active pharmaceutical ingredients in substandard and falsified medicines is temporally and spatially distributed.


Assuntos
Medicamentos Falsificados , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana
15.
medRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461674

RESUMO

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.

16.
medRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37961207

RESUMO

Importance: COVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Objective: To project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). Design: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. Setting: The entire United States. Participants: None. Exposure: Annually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measures: Ensemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. Results: From April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and Relevance: COVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease.

17.
Nat Commun ; 14(1): 7260, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985664

RESUMO

Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Incerteza
18.
Microbiol Spectr ; 10(1): e0122021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044220

RESUMO

Accurate tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been critical in efforts to control its spread. The accuracy of tests for SARS-CoV-2 has been assessed numerous times, usually in reference to a gold standard diagnosis. One major disadvantage of that approach is the possibility of error due to inaccuracy of the gold standard, which is especially problematic for evaluating testing in a real-world surveillance context. We used an alternative approach known as Bayesian latent class modeling (BLCM), which circumvents the need to designate a gold standard by simultaneously estimating the accuracy of multiple tests. We applied this technique to a collection of 1,716 tests of three types applied to 853 individuals on a university campus during a 1-week period in October 2020. We found that reverse transcriptase PCR (RT-PCR) testing of saliva samples performed at a campus facility had higher sensitivity (median, 92.3%; 95% credible interval [CrI], 73.2 to 99.6%) than RT-PCR testing of nasal samples performed at a commercial facility (median, 85.9%; 95% CrI, 54.7 to 99.4%). The reverse was true for specificity, although the specificity of saliva testing was still very high (median, 99.3%; 95% CrI, 98.3 to 99.9%). An antigen test was less sensitive and specific than both of the RT-PCR tests, although the sample sizes with this test were small and the statistical uncertainty was high. These results suggest that RT-PCR testing of saliva samples at a campus facility can be an effective basis for surveillance screening to prevent SARS-CoV-2 transmission in a university setting. IMPORTANCE Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been vitally important during the COVID-19 pandemic. There are a variety of methods for testing for this virus, and it is important to understand their accuracy in choosing which one might be best suited for a given application. To estimate the accuracy of three different testing methods, we used a data set collected at a university that involved testing the same samples with multiple tests. Unlike most other estimates of test accuracy, we did not assume that one test was perfect but instead allowed for some degree of inaccuracy in all testing methods. We found that molecular tests performed on saliva samples at a university facility were similarly accurate as molecular tests performed on nasal samples at a commercial facility. An antigen test appeared somewhat less accurate than the molecular tests, but there was high uncertainty about that.


Assuntos
Antígenos Virais/análise , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Antígenos Virais/sangue , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Humanos , Valor Preditivo dos Testes , Prevalência , Reprodutibilidade dos Testes , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Universidades , Adulto Jovem
19.
PLOS Glob Public Health ; 2(6): e0000467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962406

RESUMO

The COVID-19 pandemic has affected millions of people around the world. In Colombia, 1.65 million cases and 43,495 deaths were reported in 2020. Schools were closed in many places around the world to slow down the spread of SARS-CoV-2. In Bogotá, Colombia, most of the public schools were closed from March 2020 until the end of the year. School closures can exacerbate poverty, particularly in low- and middle-income countries. To reconcile these two priorities in health and fighting poverty, we estimated the impact of school reopening for in-person instruction in 2021. We used an agent-based model of SARS-CoV-2 transmission calibrated to the daily number of deaths. The model includes schools that represent private and public schools in terms of age, enrollment, location, and size. We simulated school reopening at different capacities, assuming a high level of face-mask use, and evaluated the impact on the number of deaths in the city. We also evaluated the impact of reopening schools based on grade and multidimensional poverty index. We found that school at 35% capacity, assuming face-mask adherence at 75% in>8 years of age, had a small impact on the number of deaths reported in the city during a third wave. The increase in deaths was smallest when only pre-kinder was opened, and largest when secondary school was opened. At larger capacities, the impact on the number of deaths of opening pre-kinder was below 10%. In contrast, reopening other grades above 50% capacity substantially increased the number of deaths. Reopening schools based on their multidimensional poverty index resulted in a similar impact, irrespective of the level of poverty of the schools that were reopened. The impact of schools reopening was lower for pre-kinder grades and the magnitude of additional deaths associated with school reopening can be minimized by adjusting capacity in older grades.

20.
R Soc Open Sci ; 9(10): 220829, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36277835

RESUMO

Though instances of arthropod-borne (arbo)virus co-infection have been documented clinically, the overall incidence of arbovirus co-infection and its drivers are not well understood. Now that dengue, Zika and chikungunya viruses are all in circulation across tropical and subtropical regions of the Americas, it is important to understand the environmental and biological conditions that make co-infections more likely to occur. To understand this, we developed a mathematical model of co-circulation of two arboviruses, with transmission parameters approximating dengue, Zika and/or chikungunya viruses, and co-infection possible in both humans and mosquitoes. We examined the influence of seasonal timing of arbovirus co-circulation on the extent of co-infection. By undertaking a sensitivity analysis of this model, we examined how biological factors interact with seasonality to determine arbovirus co-infection transmission and prevalence. We found that temporal synchrony of the co-infecting viruses and average temperature were the most influential drivers of co-infection incidence. Our model highlights the synergistic effect of co-transmission from mosquitoes, which leads to more than double the number of co-infections than would be expected in a scenario without co-transmission. Our results suggest that appreciable numbers of co-infections are unlikely to occur except in tropical climates when the viruses co-occur in time and space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA