Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 39(24): 4694-4713, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30948475

RESUMO

Adult zebrafish, in contrast to mammals, regenerate neurons in their brain, but the extent and variability of this capacity is unclear. Here we ask whether the loss of various dopaminergic neuron populations is sufficient to trigger their functional regeneration. Both sexes of zebrafish were analyzed. Genetic lineage tracing shows that specific diencephalic ependymo-radial glial (ERG) progenitor cells give rise to new dopaminergic [tyrosine hydroxylase-positive (TH+)] neurons. Ablation elicits an immune response, increased proliferation of ERG progenitor cells, and increased addition of new TH+ neurons in populations that constitutively add new neurons (e.g., diencephalic population 5/6). Inhibiting the immune response attenuates neurogenesis to control levels. Boosting the immune response enhances ERG proliferation, but not addition of TH+ neurons. In contrast, in populations in which constitutive neurogenesis is undetectable (e.g., the posterior tuberculum and locus ceruleus), cell replacement and tissue integration are incomplete and transient. This is associated with a loss of spinal TH+ axons, as well as permanent deficits in shoaling and reproductive behavior. Hence, dopaminergic neuron populations in the adult zebrafish brain show vast differences in regenerative capacity that correlate with constitutive addition of neurons and depend on immune system activation.SIGNIFICANCE STATEMENT Despite the fact that zebrafish show a high propensity to regenerate neurons in the brain, this study reveals that not all types of dopaminergic neurons are functionally regenerated after specific ablation. Hence, in the same adult vertebrate brain, mechanisms of successful and incomplete regeneration can be studied. We identify progenitor cells for dopaminergic neurons and show that activating the immune system promotes the proliferation of these cells. However, in some areas of the brain this only leads to insufficient replacement of functionally important dopaminergic neurons that later disappear. Understanding the mechanisms of regeneration in zebrafish may inform interventions targeting the regeneration of functionally important neurons, such as dopaminergic neurons, from endogenous progenitor cells in nonregenerating mammals.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Fenômenos do Sistema Imunitário/fisiologia , Regeneração Nervosa/fisiologia , Peixe-Zebra/fisiologia , Envelhecimento , Animais , Axônios/fisiologia , Linhagem da Célula/genética , Proliferação de Células , Diencéfalo/citologia , Diencéfalo/fisiologia , Feminino , Masculino , Microglia/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurogênese/fisiologia , Comportamento Sexual Animal/fisiologia
2.
Mol Pharmacol ; 87(6): 965-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25788480

RESUMO

Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic derangement.


Assuntos
Fibroblastos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , NADH Desidrogenase/genética , NAD/metabolismo , Niacinamida/análogos & derivados , Metabolismo Energético , Fibroblastos/metabolismo , Homeostase , Humanos , Lactente , Leucoencefalopatias/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação , Niacinamida/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Compostos de Piridínio , Transdução de Sinais
3.
Brain Behav Immun ; 50: 78-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26130058

RESUMO

Fingolimod affords protection from MS by sequestering lymphocytes in secondary lymphoid organs via down regulation of their sphingosine 1 phosphate receptor (S1P1). Unexpectedly, accumulating evidence indicates that patients who discontinue fingolimod treatment may be at risk of rehearsal of magnetic resonance (MR) and clinical disease activity, sometimes featuring dramatic rebound. We therefore developed in vivo and in vitro models of post-fingolimod MS rebound to unravel its cellular and molecular mechanisms. The impact of fingolimod withdrawal on T regulatory lymphocytes was also investigated by means of cytofluorimetric analysis and antigen-specific lymphocyte proliferation assays. We show that mice with relapsing-remitting experimental autoimmune encephalomyelitis (EAE) undergo extremely severe, chronic disease rebound upon discontinuation of fingolimod. Remarkably, rebound is preceded by a burst of S1P1 overexpression in lymph node-entrapped lymphocytes that correlates with subsequent massive lymphocyte egress and widespread CNS immune infiltration. Also, consistent with the ability of S1P1 to counteract polarization and function of T regulatory lymphocytes their number and suppression of effector T cells is reduced by fingolimod suspension. Data disclose the first pathogenic mechanisms of post-fingolimod rebound that may be targeted for therapeutic intervention.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Cloridrato de Fingolimode/administração & dosagem , Cloridrato de Fingolimode/efeitos adversos , Terapia de Imunossupressão , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Lisoesfingolipídeo/agonistas , Transdução de Sinais/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Linfócitos T Reguladores/metabolismo
4.
Immunol Cell Biol ; 92(2): 191-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24275857

RESUMO

NAD biosynthesis is emerging as a key regulator of immune cell functions. Accordingly, inhibitors of the NAD-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT) have anti-inflammatory effects, counteract hematological malignancies and are being tested in clinical trials. Still, their effect on different cell types still waits to be fully investigated. Here we show that the NAMPT inhibitor FK866 induces NAD depletion in various mouse organs but selectively causes dramatic atrophy of the spleen red pulp. Accordingly, in cultured mouse lymphocytes exposed to FK866, NAD contents drop to 50% of basal values within 2 days, a condition sufficient to prompt complete cell death. Cultures of human lymphocytes are more resistant to FK866 and sustain a 50% NAD reduction for 5 days before dying. Death of both cell types can be prevented by different NAD precursors, indicating critical NAD homeostasis in lymphocytes. Indeed, inhibition of the NAD-consuming enzyme poly(ADP-ribose) polimerase-1 suffices to prevent FK866-induced NAD depletion and death of both lymphocyte types. Poly(ADP-ribose) polymerase-1-null lymphocytes also undergo lower NAD depletion and reduced cell death when exposed to the drug. At variance with other cell types, neither apoptosis nor autophagy are exclusively responsible for lymphocyte death by FK866, consistent with a general impairment of lymphocyte homeostasis following NAD depletion. Data demonstrate a unique sensitivity of resting lymphocytes to NAD-depleting agents, providing new hints of relevance to lymphocyte biology and therapeutic interventions with NAMPT inhibitors.


Assuntos
Apoptose/imunologia , Citocinas/imunologia , NAD/imunologia , Nicotinamida Fosforribosiltransferase/imunologia , Acrilamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Citocinas/antagonistas & inibidores , Humanos , Masculino , Camundongos , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Piperidinas/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/imunologia
5.
Hum Mol Genet ; 18(10): 1860-8, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19261679

RESUMO

Mutations of succinate dehydrogenase (SDH) subunits B, C and D are associated to pheochromocytoma/paraganglioma (PGL) development. The mechanisms linking SDH mutations to tumorigenesis are currently unknown. We report a novel germline missense SDHB mutation (C191Y) in a patient affected by a glomus tumor. The missense mutation hits an amino acid residue conserved from mammals to the yeast Saccharomyces cerevisiae. The pathogenic significance of the human mutation was validated in a yeast model. SDH2(C184Y) mutant allele equivalent to human SDHB(C191Y) did not restore the OXPHOS phenotype of the Deltasdh2 null mutant. In the mutant, SDH activity was also abolished along with a reduction in respiration. Sensitivity to oxidative stress was increased in the mutant, as revealed by reduced growth in the presence of menadione. Remarkably, the frequency of petite colony formation was increased in the mutant yeast strain, indicating an increased mtDNA mutability. Histochemistry demonstrates that SDH activity was selectively absent in the patient tumor tissue. Overall, our results demonstrate that the C191Y SDHB mutation suppresses SDH enzyme activity leading to increased ROS formation and mtDNA mutability in our yeast model. These findings further our understanding of the mechanisms underlying PGL development and point to the yeast model as a valid tool to investigate on the possible pathogenic relevance of SDH novel mutations and/or rare polymorphism.


Assuntos
Mutação em Linhagem Germinativa , Tumor Glômico/enzimologia , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Adulto , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Feminino , Tumor Glômico/genética , Tumor Glômico/metabolismo , Humanos , Dados de Sequência Molecular , Estresse Oxidativo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Succinato Desidrogenase/química
6.
Mol Med ; 17(5-6): 442-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21373721

RESUMO

Multiple sclerosis (MS) is a devastating autoimmune disorder of the central nervous system (CNS) for which there is no efficacious cure. Thanks to numerous preclinical and clinical studies, drugs able to mitigate the inexorable course of the disease have been made available recently. Still, there is a terrible need for compounds capable of reducing the severity of the autoimmune attack and of blocking progression of the disorder. Also, besides the classic immunosuppressive strategies, it is now appreciated that compounds directly targeting neuronal death can be of relevance to the treatment of MS patients. Acetylation homeostasis is a key regulator of both immune cell activation and neuronal survival. Of note, potent histone deacetylase inhibitors (HDACi) endowed with antiinflammatory and neuroprotective properties have been identified. Efficacy of HDACi in experimental models of MS has been reported consistently. In this review, we provide an appraisal of the literature on HDACi and MS, also discussing the mechanisms by which HDACi can suppress the autoimmune attack to the CNS.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Animais , Humanos , Esclerose Múltipla/imunologia
7.
Mult Scler ; 17(7): 794-807, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21343230

RESUMO

BACKGROUND: Pharmacological inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) are currently evaluated in clinical trials for various malignancies but, interestingly, also proved of remarkable efficacy in preclinical models of autoimmune disorders including experimental autoimmune encephalomyelitis (EAE). OBJECTIVES: The objectives of the study were to determine molecular mechanisms underlying suppression of the encephalitogenic response by these drugs; likewise, whether clinically-relevant post-treatment paradigms with PARP-1 inhibitors could prevent EAE relapses. METHODS: Adopted both in vitro techniques (bone marrow-derived cultured DC) as well as in vivo models of chronic or relapsing-remitting (RR) EAE. RESULTS: We report that two structurally unrelated PARP-1 inhibitors negatively regulated NFκB activation, as well as maturation, cytokine production and APC function of cultured mouse bone marrow-derived dendritic cells (DCs). PARP-1 inhibitors also reduced the number and APC function of DCs migrating in the draining lymph nodes of ovalbumin-immunized mice. In C57Bl mice with chronic EAE or SJL mice with RR EAE, pharmacological inhibition of PARP-1 reduced CNS DC migration and demyelination as well as neurological impairment to an extent similar to that achieved with the potent immunosuppressant cyclosporine A. Remarkably, PARP-1 inhibitors injected after the first phase of disease reduced relapse incidence and severity, as well as the spinal cord number of autoreactive Th17 cells. Under this clinically-relevant treatment paradigm, PARP inhibitors also suppressed epitope spreading of the encephalitogenic response. CONCLUSIONS: Overall, data underscore the potential relevance of PARP-1 inhibitors to MS therapy and suppression of autoimmunity.


Assuntos
Movimento Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Fármacos Neuroprotetores/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Análise de Variância , Animais , Apresentação de Antígeno/efeitos dos fármacos , Autoimunidade/efeitos dos fármacos , Células Cultivadas , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Ovalbumina/imunologia , Fenantrenos/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Recidiva , Índice de Gravidade de Doença , Células Th17/efeitos dos fármacos , Células Th17/enzimologia , Células Th17/imunologia , Fatores de Tempo
8.
Dev Cell ; 56(11): 1617-1630.e6, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033756

RESUMO

Central nervous system injury re-initiates neurogenesis in anamniotes (amphibians and fishes), but not in mammals. Activation of the innate immune system promotes regenerative neurogenesis, but it is fundamentally unknown whether this is indirect through the activation of known developmental signaling pathways or whether immune cells directly signal to progenitor cells using mechanisms that are unique to regeneration. Using single-cell RNA-seq of progenitor cells and macrophages, as well as cell-type-specific manipulations, we provide evidence for a direct signaling axis from specific lesion-activated macrophages to spinal progenitor cells to promote regenerative neurogenesis in zebrafish. Mechanistically, TNFa from pro-regenerative macrophages induces Tnfrsf1a-mediated AP-1 activity in progenitors to increase regeneration-promoting expression of hdac1 and neurogenesis. This establishes the principle that macrophages directly communicate to spinal progenitor cells via non-developmental signals after injury, providing potential targets for future interventions in the regeneration-deficient spinal cord of mammals.


Assuntos
Histona Desacetilase 1/genética , Neurogênese/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Regeneração/genética , Medula Espinal/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Animais , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Macrófagos/citologia , Macrófagos/metabolismo , RNA-Seq , Transdução de Sinais/genética , Análise de Célula Única , Medula Espinal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fator de Transcrição AP-1/genética , Peixe-Zebra/genética
9.
J Immunol ; 181(5): 2999-3008, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18713970

RESUMO

IFN-alpha is a well-known agent for treatment of viral and malignant diseases. It has several modes of actions, including direct influence on the immune system. We investigated IFN-alpha effects on PBMC in terms of dendritic cell (DC) differentiation, as PBMC are exposed to high IFN-alpha levels during treatment of infections and cancers. We show that in vitro IFN-alpha exposure induced rapid and strong up-regulation of the DC-maturation markers CD80, CD86, and CD83 in bulk PBMC. Consistently, IFN-alpha induced up-regulation of these molecules on purified monocytes within 24 h. Up-regulation of CD80 and CD83 expression was IFN-alpha concentration-dependent. In contrast to GM-CSF + IL-4-generated DCs, most of the IFN-alpha-challenged CD83(+) cells coexpressed the monocyte marker CD14. Despite a typical mature DC immunophenotype, IFN-alpha-treated monocytes conserved phagocytic activity and never acquired a dendritic morphology. In mixed lymphocyte reactions IFN-alpha-treated monocytes were less potent than GM-CSF + IL-4-generated DCs but significantly more potent than untreated monocytes to induce T cell proliferation in bulk PBMC. However, only GM-CSF + IL-4-generated DCs were able to induce a significant proliferation of naive CD4(+) T cells. Notably, autologous memory CD4(+) T cells proliferated when exposed to tetanus toxoid-pulsed IFN-alpha-treated monocytes. At variance with untreated or GM-CSF + IL-4-exposed monocytes, those challenged with IFN-alpha showed long-lasting STAT-1 phosphorylation. Remarkably, CD83(+)CD14(+) cells were present in varicella skin lesions in close contact with IFN-alpha-producing cells. The present findings suggest that IFN-alpha alone promptly generates nondendritic APCs able to stimulate memory immune responses. This may represent an additional mode of action of IFN-alpha in vivo.


Assuntos
Células Apresentadoras de Antígenos , Antígenos CD , Imunoglobulinas , Interferon-alfa/farmacologia , Receptores de Lipopolissacarídeos , Glicoproteínas de Membrana , Monócitos/efeitos dos fármacos , Antígeno B7-1 , Biomarcadores/análise , Linfócitos T CD4-Positivos/imunologia , Varicela/imunologia , Células Dendríticas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Memória Imunológica/efeitos dos fármacos , Monócitos/imunologia , Antígeno CD83
10.
Neurobiol Dis ; 36(2): 269-79, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19635561

RESUMO

Histone deacetylase inhibitors (HDACi) are emerging tools for epigenetic modulation of gene expression and suppress the inflammatory response in models of systemic immune activation. Yet, their effects within the brain are still controversial. Also, whether HDACs are expressed in astrocytes or microglia is unclear. Here, we report the identification of transcripts for HDAC 1-11 in cultured mouse glial cells. Two HDACi such as SAHA and ITF2357 induce dramatic increase of histone acetylation without causing cytotoxicity of cultured cells. Of note, the two compounds inhibit expression of pro-inflammatory mediators by LPS-challenged glial cultures, and potentiate immunosuppression triggered by dexamethasone in vitro. The anti-inflammatory effect is not due to HDACi-induced transcription of immunosuppressant proteins, (including SOCS-1/3) or microRNA-146. Rather, it is accompanied by direct alteration of transcription factor DNA binding and ensuing transcriptional activation. Indeed, both HDACi impair NFkappaB-dependent IkappaBalpha resynthesis in glial cells exposed to LPS, and, among various AP1 subunits and NFkappaB p65, affect the DNA binding activity of c-FOS, c-JUN and FRA2. Importantly, ITF2357 reduces the expression of pro-inflammatory mediators in the striatum of mice iontophoretically injected with LPS. Data demonstrate that mouse glial cells have ongoing HDAC activity, and its inhibition suppresses the neuroinflammatory response because of a direct impairment of the transcriptional machinery.


Assuntos
Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Mediadores da Inflamação/fisiologia , Neuroglia/enzimologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos
11.
Neuroscience ; 379: 228-238, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29588251

RESUMO

Emerging evidence indicates that transcriptome alterations due to epigenetic deregulation concur to ALS pathogenesis. Accordingly, pan-histone deacetylase (HDAC) inhibitors delay ALS development in mice, but these compounds failed when tested in ALS patients. Possibly, lack of selectivity toward specific classes of HDACs weakens the therapeutic effects of pan-HDAC inhibitors. Here, we tested the effects of the HDAC Class II selective inhibitor MC1568 on disease evolution, motor neuron survival as well as skeletal muscle function in SOD1G93A mice. We report that HDACs did not undergo expression changes during disease evolution in isolated motor neurons of adult mice. Conversely, increase in specific Class II HDACs (-4, -5 and -6) occurs in skeletal muscle of mice with severe neuromuscular impairment. Importantly, treatment with MC1568 causes early improvement of motor performances that vanishes at later stages of disease. Notably, motor improvement is not paralleled by reduced motor neuron degeneration but by increased skeletal muscle electrical potentials, reduced activation of mir206/FGFBP1-dependent muscle reinnervation signaling, and increased muscle expression of myogenic genes.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neurônios Motores/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pirróis/farmacologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Histona Desacetilases/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distribuição Aleatória , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Superóxido Dismutase/metabolismo
12.
Nat Commun ; 9(1): 4670, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405119

RESUMO

Spinal cord injury leads to a massive response of innate immune cells in non-regenerating mammals, but also in successfully regenerating zebrafish. However, the role of the immune response in successful regeneration is poorly defined. Here we show that inhibiting inflammation reduces and promoting it accelerates axonal regeneration in spinal-lesioned zebrafish larvae. Mutant analyses show that peripheral macrophages, but not neutrophils or microglia, are necessary for repair. Macrophage-less irf8 mutants show prolonged inflammation with elevated levels of Tnf-α and Il-1ß. Inhibiting Tnf-α does not rescue axonal growth in irf8 mutants, but impairs it in wildtype animals, indicating a pro-regenerative role of Tnf-α. In contrast, decreasing Il-1ß levels or number of Il-1ß+ neutrophils rescue functional regeneration in irf8 mutants. However, during early regeneration, interference with Il-1ß function impairs regeneration in irf8 and wildtype animals. Hence, inflammation is dynamically controlled by macrophages to promote functional spinal cord regeneration in zebrafish.


Assuntos
Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Regeneração Nervosa , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/metabolismo , Animais , Axônios/metabolismo , Colágeno Tipo XII/metabolismo , Microglia/metabolismo , Microglia/patologia , Mutação/genética , Neutrófilos/metabolismo , Medula Espinal/patologia , Peixe-Zebra/imunologia
13.
Neurosci Lett ; 656: 120-125, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28732762

RESUMO

Transcriptional deregulation emerges as a key pathogenetic mechanism in ALS pathogenesis, and non-class-specific histone deacetylase (HDACs) inhibitors proved of therapeutic efficacy in preclinical models of ALS. When tested in patients, however, these drugs failed, probably because of a lack of selectivity toward pathogenetic HDACs. Here, we studied the effects of MC1568, an inhibitor of Class-II HDACs which have been reported to contribute to ALS pathogenesis. We focused on transcriptional regulation of glutamate transporter EAAT2, whose reduced expression may contribute to motor neuron degeneration in ALS. We report that MC1568 highly increased EAAT2 transcripts in primary cultures of mouse glia, but these increases did not correlate with increased glutamate uptake capacity. Accordingly, we found that MC1568 augmented protein expression of EAAT2 together with its sumoylation, a post-translational modification typically altering protein function and localization. When tested in SOD1G93A mice, however, MC1568 fully restored the reduced spinal cord expression of EAAT2 and glutamate uptake up to control levels. A prolonged treatment with MC1568 (from onset to end stage) was unable to prolong survival of mice. Data reveal a key role of Class-II HDACs in expression and function of glutamate transporter, further corroborating preclinical and clinical evidence that the sole restoration of glutamate uptake is not of therapeutic relevance to ALS therapy.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Pirróis/farmacologia , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/mortalidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos Transgênicos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
14.
Neuropharmacology ; 117: 74-84, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28161373

RESUMO

Mitochondrial encephalopathies are fatal, infantile neurodegenerative disorders caused by a deficit of mitochondrial functioning, for which there is urgent need to identify efficacious pharmacological treatments. Recent evidence shows that rapamycin administered both intraperitoneally or in the diet delays disease onset and enhances survival in the Ndufs4 null mouse model of mitochondrial encephalopathy. To delineate the clinical translatability of rapamycin in treatment of mitochondrial encephalopathy, we evaluated the drug's effects on disease evolution and mitochondrial parameters adopting treatment paradigms with fixed daily, oral doses starting at symptom onset in Ndufs4 knockout mice. Molecular mechanisms responsible for the pharmacodynamic effects of rapamycin were also evaluated. We found that rapamycin did not affect disease development at clinically-relevant doses (0.5 mg kg-1). Conversely, an oral dose previously adopted for intraperitoneal administration (8 mg kg-1) delayed development of neurological symptoms and increased median survival by 25%. Neurological improvement and lifespan were not further increased when the dose raised to 20 mg kg-1. Notably, rapamycin at 8 mg kg-1 did not affect the reduced expression of respiratory complex subunits, as well as mitochondrial number and mtDNA content. This treatment regimen however significantly ameliorated architecture of mitochondria cristae in motor cortex and cerebellum. However, reduction of mTOR activity by rapamycin was not consistently found within the brain of knockout mice. Overall, data show the ability of rapamycin to improve ultrastructure of dysfunctional mitochondria and corroborate its therapeutic potential in mitochondrial disorders. The non-clinical standard doses required, however, raise concerns about its rapid and safe clinical transferability.


Assuntos
Encefalomiopatias Mitocondriais/tratamento farmacológico , Encefalomiopatias Mitocondriais/patologia , Sirolimo/uso terapêutico , Administração Oral , Animais , Cerebelo/metabolismo , Cerebelo/patologia , DNA Mitocondrial/metabolismo , Progressão da Doença , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Córtex Motor/metabolismo , Córtex Motor/patologia , Músculo Esquelético/metabolismo , Sirolimo/administração & dosagem , Sirolimo/sangue , Sirolimo/farmacocinética , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo
15.
J Alzheimers Dis ; 54(2): 737-50, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27567859

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP1) activation contributes to the cascade of events initiated by amyloid-ß (Aß) peptide eventually leading to cell death in Alzheimer's disease brain. A significant accumulation of PAR polymers and increase of PARP1 expression were detected in the cortex at the early (3.5 months) and intermediate (6 months) stage of Aß deposition in the TgCRND8 mouse model. Our previous data highlighted the beneficial effects of oleuropein aglycone (OLE), the main polyphenol found in the olive oil, against neurodegeneration both in cultured cells and in model organisms. Here we found that 8-week OLE treatment (50 mg/kg of diet) to 6-month-old TgCRND8 mice rescued to control values PARP1 activation and the levels of its product, PAR. In N2a neuroblastoma cells, PARP1 activation and PAR formation upon exposure to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were abolished by pretreatment for 24 h with either OLE (100µM) or PARP inhibitors. A significant reduction of the NAD+ content, compared to controls, was found in N2a cells exposed to MNNG (100µM) for 90 min; the latter was slightly attenuated by cell treatment for 24 h with PJ-34 or with OLE. In vitro and in vivo, the OLE-induced reduction of PARP1 activation was paralleled by the overexpression of Sirtuin1 (SIRT1), and, in vivo, by a decrease of NF-κB and the pro-apoptotic marker p53. In N2a cells, we also found that OLE potentiates the MNNG-induced increase of Beclin1 levels. In conclusion, our data show that OLE treatment counteracts neuronal damage through modulation of the PARP1-SIRT1 interplay.


Assuntos
Iridoides/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Polifenóis/farmacologia , Sirtuína 1/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Glucosídeos Iridoides , Camundongos , Camundongos Transgênicos , Vasodilatadores/farmacologia
16.
Clin Exp Otorhinolaryngol ; 8(2): 123-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26045910

RESUMO

OBJECTIVES: The nuclear protein high mobility group protein box 1 (HMGB1) is a proinflammatory mediator that belongs to the alarmin family of proinflammatory mediators, and it has recently emerged as a key player in different acute and chronic immune disorders. Several lines of evidence demonstrate that HMGB1 is actively released extracellularly from immune cells or passively released from necrotic cells. Because of the ability of HMGB1 to sustain chronic inflammation, we investigated whether the protein is present in nasal fluids of patients with different forms of rhinitis. METHODS: HMGB1 levels were evaluated in nasal fluids of healthy subjects or rhinitis patients who were treated or not treated with different treatments. RESULTS: We report that the level of HMGB1 was significantly increased in nasal fluids of patients with allergic rhinitis, patients with NARES (nonallergic rhinitis with eosinophiliac syndrome), as well as patients with polyps. We also found that a formulation containing the HMGB1-binding compound glycyrrhizin (GLT) reduced the HMGB1 content in nasal fluids of rhinitis patients to an extent similar to that with nasal budesonide treatment. We also found that among the cultured human leukocyte populations, eosinophils released higher amounts of HMGB1. Based on the ability of HMGB1 to sustain eosinophil survival and the ability of GLT to inactivate HMGB1, we report that GLT selectively killed cultured eosinophils and had no effect on neutrophils, macrophages, and lymphocytes. CONCLUSION: Collectively, these data underscore the role of HMGB1 in rhinitis pathogenesis and the therapeutic potential of GLT formulations in treatment of chronic inflammatory disorders of the nasal mucosa.

17.
Invest Ophthalmol Vis Sci ; 55(11): 7266-71, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25301877

RESUMO

PURPOSE: We evaluated the potential protective effects of Coenzyme Q10 (CoQ10) on human corneal cells and rabbit eyes after ultraviolet B (UVB) exposure and a model of wound healing in rabbit eyes after corneal epithelium removal. METHODS: Human corneal epithelium cells (HCE) were exposed to a source of UVB radiation (312 nM) in the presence of different CoQ10 concentrations or vehicle. The mitochondrial function and cell survival were evaluated by means of 3-(4,5-dimethylthiazole-2-yl)2,5-diphenyl-tetrazolium (MTT) reduction and lactic dehydrogenase (LDH) release. Furthermore, quantitation of oxygen consumption and mitochondrial membrane potential were conducted. In vivo rabbit models were adopted to evaluate the effect of CoQ10 on UVB-induced conjunctival vessel hyperemia and corneal recovery after ethanol induced corneal lesion. RESULTS: In UVB-exposed HCE cells, CoQ10 addition led to an increased survival rate and mitochondrial function. Furthermore, oxygen consumption was maintained at control levels and adenosine triphosphate (ATP) decline was completely prevented in the CoQ10-treated cells. Interestingly, in an in vivo model, CoQ10 was able dose-dependently to reduce UVB-induced vessel hyperemia. Finally, in a model of corneal epithelium removal, 12 hours from surgery, animals treated with CoQ10 showed a reduction of damaged area in respect to vehicle controls, which lasted until 48 hours. CONCLUSIONS: We demonstrated that CoQ10 reduces corneal damages after UVB exposure in vivo and in vitro by preserving mitochondrial function. Also, for the first time to our knowledge we showed that the administration of CoQ10 after corneal epithelium removal promotes corneal wound healing.


Assuntos
Doenças da Córnea/tratamento farmacológico , Lesões da Córnea/tratamento farmacológico , Epitélio Corneano/patologia , Queimaduras Oculares/tratamento farmacológico , Mitocôndrias/fisiologia , Ubiquinona/análogos & derivados , Cicatrização/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Queimaduras Oculares/metabolismo , Queimaduras Oculares/patologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases , Soluções Oftálmicas , Ubiquinona/administração & dosagem , Raios Ultravioleta/efeitos adversos , Vitaminas/administração & dosagem
18.
Neurotherapeutics ; 11(3): 651-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24935635

RESUMO

Mitochondrial disorders are deadly childhood diseases for which therapeutic remedies are an unmet need. Given that genetic suppression of the nuclear enzyme poly (adenine diphosphate-ribose) polymerase(PARP)-1 improves mitochondrial functioning, we investigated whether pharmacological inhibition of the enzyme affords protection in a mouse model of a mitochondrial disorder. We used mice lacking the Ndufs4 subunit of the respiratory complex I (Ndufs4 knockout [ KO] mice); these mice undergo progressive encephalopathy and die around postnatal day 50. Mice were treated daily with the potent PARP inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride (PJ34); neurological parameters, PARP activity, and mitochondrial homeostasis were evaluated. We found that mice receiving N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride from postnatal day 30 to postnatal day 50 show reduced neurological impairment, and increased exploratory activity and motor skills compared with vehicle-treated animals. However, drug treatment did not delay or reduce death. We found no evidence of increased PARP activity within the brain of KO mice compared with heterozygous, healthy controls. Conversely, a 10-day treatment with the PARP inhibitor significantly reduced basal poly(ADP-ribosyl)ation in different organs of the KO mice, including brain, skeletal muscle, liver, pancreas, and spleen. In keeping with the epigenetic role of PARP-1, its inhibition correlated with increased expression of mitochondrial respiratory complex subunits and organelle number. Remarkably, pharmacological targeting of PARP reduced astrogliosis in olfactory bulb and motor cortex, but did not affect neuronal loss of KO mice. In light of the advanced clinical development of PARP inhibitors, these data emphasize their relevance to treatment of mitochondrial respiratory defects.


Assuntos
Progressão da Doença , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Encefalomiopatias Mitocondriais/enzimologia , Fenantrenos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Encefalomiopatias Mitocondriais/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Fenantrenos/uso terapêutico , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/metabolismo
19.
J Cereb Blood Flow Metab ; 33(2): 183-90, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23093068

RESUMO

Therapeutic hypothermia is of relevance to treatment of increased body temperature and brain injury, but drugs inducing selective, rapid, and safe cooling in humans are not available. Here, we show that injections of adenosine 5'-monophosphate (AMP), an endogenous nucleotide, promptly triggers hypothermia in mice by directly activating adenosine A1 receptors (A1R) within the preoptic area (POA) of the hypothalamus. Inhibition of constitutive degradation of brain extracellular AMP by targeting ecto 5'-nucleotidase, also suffices to prompt hypothermia in rodents. Accordingly, sensitivity of mice and rats to the hypothermic effect of AMP is inversely related to their hypothalamic 5'-nucleotidase activity. Single-cell electrophysiological recording indicates that AMP reduces spontaneous firing activity of temperature-insensitive neurons of the mouse POA, thereby retuning the hypothalamic thermoregulatory set point towards lower temperatures. Adenosine 5'-monophosphate also suppresses prostaglandin E2-induced fever in mice, having no effects on peripheral hyperthermia triggered by dioxymetamphetamine (ecstasy) overdose. Together, data disclose the role of AMP, 5'-nucleotidase, and A1R in hypothalamic thermoregulation, as well and their therapeutic relevance to treatment of febrile illness.


Assuntos
5'-Nucleotidase/metabolismo , Monofosfato de Adenosina/metabolismo , Regulação da Temperatura Corporal , Febre/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Área Pré-Óptica/metabolismo , Receptor A1 de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Inibidores da Captação Adrenérgica/efeitos adversos , Inibidores da Captação Adrenérgica/farmacologia , Animais , Dinoprostona/efeitos adversos , Dinoprostona/farmacologia , Febre/induzido quimicamente , Febre/tratamento farmacológico , Humanos , Hipotermia Induzida , Masculino , Camundongos , N-Metil-3,4-Metilenodioxianfetamina/efeitos adversos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Neurônios/metabolismo , Ocitócicos/efeitos adversos , Ocitócicos/farmacologia , Área Pré-Óptica/patologia , Uso Indevido de Medicamentos sob Prescrição , Ratos , Ratos Wistar
20.
PLoS One ; 8(6): e66527, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840500

RESUMO

BACKGROUND: High mobility group box-1 (HMGB1) is a DNA-binding protein that is released from injured cells during inflammation. Advances in targeting HMGB1 represent a major challenge to improve the treatment of acute/chronic inflammation. AIM: This study is aimed at verifying whether the inhibition of HMGB1 through dipotassium glycyrrhizate (DPG) is a good strategy to reduce intestinal inflammation. METHODS: Human colon adenocarcinoma cell line, HT29, human epithelial colorectal adenocarcinoma, Caco2, and murine macrophage cell line, RAW 264.7, were cultured to investigate the effect of DPG on the secretion of HMGB1. Acute colitis was induced in C57BL/6 mice through administration of 3% dextran sodium sulphate (DSS); a combined treatment with DSS and 3 or 8 mg/kg/day DPG was used to investigate the effects of DPG on intestinal inflammation. Animals were euthanized at seventh day and colonic samples underwent molecular and histological analyses. RESULTS: DPG significantly reduces in vitro the release of HMGB1 in the extracellular matrix as well as expression levels of pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6, by inhibiting HMGB1. Moreover, DPG significantly decreases the severity of DSS-induced colitis in mice. Murine colonic samples show decreased mRNA levels of pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6, as well as HMGB1 receptors, RAGE and TLR4. Finally, HMGB1, abundantly present in the feces of mice with DSS-induced colitis, is strongly reduced by DPG. CONCLUSIONS: HMGB1 is an early pro-inflammatory cytokine and an active protagonist of mucosal gut inflammation. DPG exerts inhibitory effects against HMGB1 activity, significantly reducing intestinal inflammation. Thus, we reason that DPG could represent an innovative tool for the management of human intestinal inflammation.


Assuntos
Colite/prevenção & controle , Ácido Glicirrízico/farmacologia , Proteína HMGB1/antagonistas & inibidores , Inflamação/prevenção & controle , Animais , Linhagem Celular , Linhagem Celular Tumoral , Colite/metabolismo , Citocinas/metabolismo , Feminino , Proteína HMGB1/metabolismo , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA