Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Small ; 20(15): e2307006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992252

RESUMO

Ferronematics that are generally based on nematic liquid crystals (LCs) doped with magnetic nanoparticles, synergistically taking advantage of the anisotropic and flow characteristics of the nematic host and the magnetic susceptibility of the dopant, have powerful applications as magnetically actuated soft materials. In this work, a Co(II) complex, which alone presents both characteristics, is built with a salen-type ligand 3,5-dichlorosubstituted at the aromatic nuclei and has a tetramethyldisiloxane spacer, which makes it one of the few metallomesogens containing this structural motif. Paramagnetic crystals, through heat treatment above 110 °C, change into magnetic nematic LCs. Applying a perpendicular magnetic field of 50 mT, the nematic droplets align two by two through dipole-dipole interactions. By incorporating it into a silicone matrix consisting mainly of polydimethylsiloxane, a 3D printable ink is formulated and crosslinked under various shapes. In this environment, the cobalt complex is stabilized in an LC state at room temperature and, due to its anisotropy, facilitates the mechanical response to magnetic stimuli. The resulting objects can be easily manipulated on fluid or rough surfaces using external magnetic fields, behave like magnets by themselves, and show reversible locomotion.

2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834134

RESUMO

Due to their structural, morphological, and behavioral characteristics (e.g., large volume and adjustable pore size, wide functionalization possibilities, excellent biocompatibility, stability, and controlled biodegradation, the ability to protect cargoes against premature release and unwanted degradation), mesoporous silica particles (MSPs) are emerging as a promising diagnostic and delivery platform with a key role in the development of next-generation theranostics, nanovaccines, and formulations. In this study, MSPs with customized characteristics in-lab prepared were fully characterized and used as carriers for doxorubicin (DOX). The drug loading capacity and the release profile were evaluated in media with different pH values, mimicking the body conditions. The release data were fitted to Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin kinetic models to evaluate the release constant and the mechanism. The in vitro behavior of functionalized silica particles showed an enhanced cytotoxicity on human breast cancer (MCF-7) cells. Bio- and mucoadhesion on different substrates (synthetic cellulose membrane and porcine tissue mucosa)) and antimicrobial activity were successfully assessed, proving the ability of the OH- or the organically modified MSPs to act as antimicrobial and mucoadhesive platforms for drug delivery systems with synergistic effects.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Nanopartículas , Animais , Humanos , Suínos , Feminino , Dióxido de Silício/química , Nanopartículas/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias da Mama/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Portadores de Fármacos/química , Porosidade , Liberação Controlada de Fármacos
3.
Medicina (Kaunas) ; 59(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38003985

RESUMO

Background and Objectives: One's quality of life depends on overall health, and in particular, oral health, which has been and continues to become a public health issue through frequent manifestations in various forms, from simple oral stomatitis (inflammations of the oral cavity) to the complicated oral health pathologies requiring medical interventions and treatments (caries, pulp necrosis and periodontitis). The aim of this study focused on the preparation and evaluation of vitamins (vitamin A, B1 and B6) incorporated into several silicone-based lining materials as a new alternative to therapeutically loaded materials designed as oral cavity lining materials in prosthodontics. Materials and Methods: Silicone-based liners containing vitamins were prepared by mixing them in solution and becoming crosslinked, and then they were characterized using Fourier-transform infrared (FT-IR) spectroscopy to confirm the incorporation of the vitamins into the silicone network; scanning electron microscopy (SEM) to evidence the morphology of the liner materials; dynamic vapor sorption (DVS) to evaluate their internal hydrophobicity, swelling in environments similar to biological fluids and mechanical test to demonstrate tensile strength; MTT to confirm their biocompatibility on normal cell cultures (fibroblast) and mucoadhesivity; and histopathological tests on porcine oral mucosa to highlight their potential utility as soft lining materials with improved efficiency. Results: FT-IR analysis confirmed the structural peculiarities of the prepared lining materials and the successful incorporation of vitamins into the silicone matrix. The surface roughness of the materials was lower than 0.2 µm, while in cross-section, the lining materials showed a compact morphology. It was found that the presence of vitamins induced a decrease in the main mechanical parameters (strength and elongation at break, Young's modulus) and hydrophobicity, which varied from one vitamin to another. A swelling degree higher than 8% was found in PBS 6.8 (artificial saliva) and water. Hydrolytic stability studies in an artificial saliva medium showed the release of low concentrations of silicone and vitamin fragments in the first 24 h, which increased the swelling behavior of the materials, diffusion and solubility of the vitamins. The microscopic images of fibroblast cells incubated with vitamin liners revealed very good biocompatibility. Also, the silicone liners incorporating the vitamins showed good mucoadhesive properties. The appearance of some pathological disorders with autolysis processes was more pronounced in the case of vitamin A liners. Conclusions: The addition of the vitamins was shown to have a beneficial effect that was mainly manifested as increased biocompatibility, hydrolytic stability and mucoadhesiveness with the mucosa of the oral cavity and less of an effect on the mechanical strength. The obtained lining materials showed good resistance in simulated biological media but caused a pronounced autolysis phenomenon, as revealed by histopathological examination, showing that these materials may have broad implications in the treatment of oral diseases.


Assuntos
Reembasadores de Dentadura , Elastômeros de Silicone , Animais , Suínos , Elastômeros de Silicone/química , Vitaminas , Vitamina A , Mucosa Bucal , Qualidade de Vida , Saliva Artificial , Espectroscopia de Infravermelho com Transformada de Fourier , Teste de Materiais , Vitamina K
4.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500656

RESUMO

The specific features of the siloxane bond unify the compounds based on it into a class with its own chemistry and unique combinations of chemical and physical properties. An illustration of their chemical peculiarity is the behavior of 1,3-bis(2-aminoethylaminomethyl)tetramethyldisiloxane (AEAMDS) in the reaction with carbonyl compounds and metal salts, by which we obtain the metal complexes of the corresponding Schiff bases formed in situ. Depending on the reaction conditions, the fragmentation of this compound takes place at the siloxane bond, but, in most cases, it is in the organic moieties in the ß position with respect to the silicon atom. The main compounds that were formed based on the moieties resulting from the splitting of this diamine were isolated and characterized from a structural point of view. Depending on the presence or not of the metal salt in the reaction mixture, these are metal complexes with organic ligands (either dangling or not dangling silanol tails), or organic compounds. Through theoretical calculations, electrons that appear in the structure of the siloxane bond in different contexts and that lead to such fragmentations have been assessed.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Siloxanas/química , Bases de Schiff/química , Ligantes , Elétrons
5.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500619

RESUMO

Silicone elastomer composites with piezoelectric properties, conferred by incorporated polyimide copolymers, with pressure sensors similar to human skin and kinetic energy harvester capabilities, were developed as thin film (<100 micron thick) layered architecture. They are based on polymer materials which can be produced in industrial amounts and are scalable for large areas (m2). The piezoelectric properties of the tested materials were determined using a dynamic mode of piezoelectric force microscopy. These composite materials bring together polydimethylsiloxane polymers with customized poly(siloxane-imide) copolymers (2−20 wt% relative to siloxanes), with siloxane segments inserted into the structure to ensure the compatibility of the components. The morphology of the materials as free-standing films was studied by SEM and AFM, revealing separated phases for higher polyimide concentration (10, 20 wt%). The composites show dielectric behavior with a low loss (<10−1) and a relative permittivity superior (3−4) to pure siloxane within a 0.1−106 Hz range. The composite in the form of a thin film can generate up to 750 mV under contact with a 30 g steel ball dropped from 10 cm high. This capability to convert a pressure signal into a direct current for the tested device has potential for applications in self-powered sensors and kinetic energy-harvesting applications. Furthermore, the materials preserve the known electromechanical properties of pure polysiloxane, with lateral strain actuation values of up to 6.2% at 28.9 V/µm.


Assuntos
Eletricidade , Polímeros , Humanos , Polímeros/química , Siloxanas
6.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577095

RESUMO

We present the magnetic properties of the metal-organic framework {[CoCxAPy]·2.15 H2O}n (Cx = bis(carboxypropyl)tetramethyldisiloxane; APy = 4,4`-azopyridine) (1) that builds up from the stacking of 2D coordination polymers. The 2D-coordination polymer in the bc plane is formed by the adjacent bonding of [CoCxAPy] 1D two-leg ladders with Co dimer rungs, running parallel to the c-axis. The crystal packing of 2D layers shows the presence of infinite channels running along the c crystallographic axis, which accommodate the disordered solvate molecules. The Co(II) is six-coordinated in a distorted octahedral geometry, where the equatorial plane is occupied by four carboxylate oxygen atoms. Two nitrogen atoms from APy ligands are coordinated in apical positions. The single-ion magnetic anisotropy has been determined by low temperature EPR and magnetization measurements on an isostructural compound {[Zn0.8Co0.2CxAPy]·1.5 CH3OH}n (2). The results show that the Co(II) ion has orthorhombic anisotropy with the hard-axis direction in the C2V main axis, lying the easy axis in the distorted octahedron equatorial plane, as predicted by the ab initio calculations of the g-tensor. Magnetic and heat capacity properties at very low temperatures are rationalized within a S* = 1/2 magnetic dimer model with anisotropic antiferromagnetic interaction. The magnetic dimer exhibits slow relaxation of the magnetization (SMM) below 6 K in applied field, with a tlf ≈ 2 s direct process at low frequencies, and an Orbach process at higher frequencies with U/kB = 6.7 ± 0.5 K. This compound represents a singular SMM MOF built-up of Co-dimers with an anisotropic exchange interaction.

7.
Inorg Chem ; 56(6): 3532-3549, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28252952

RESUMO

As ribonucleotide reductase (RNR) plays a crucial role in nucleic acid metabolism, it is an important target for anticancer therapy. The thiosemicarbazone Triapine is an efficient R2 inhibitor, which has entered ∼20 clinical trials. Thiosemicarbazones are supposed to exert their biological effects through effectively binding transition-metal ions. In this study, six iminodiacetate-thiosemicarbazones able to form transition-metal complexes, as well as six dicopper(II) complexes, were synthesized and fully characterized by analytical, spectroscopic techniques (IR, UV-vis; 1H and 13C NMR), electrospray ionization mass spectrometry, and X-ray diffraction. The antiproliferative effects were examined in several human cancer and one noncancerous cell lines. Several of the compounds showed high cytotoxicity and marked selectivity for cancer cells. On the basis of this, and on molecular docking calculations one lead dicopper(II) complex and one thiosemicarbazone were chosen for in vitro analysis as potential R2 inhibitors. Their interaction with R2 and effect on the Fe(III)2-Y· cofactor were characterized by microscale thermophoresis, and two spectroscopic techniques, namely, electron paramagnetic resonance and UV-vis spectroscopy. Our findings suggest that several of the synthesized proligands and copper(II) complexes are effective antiproliferative agents in several cancer cell lines, targeting RNR, which deserve further investigation as potential anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Organometálicos/farmacologia , Ribonucleotídeo Redutases/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Iminoácidos/química , Iminoácidos/farmacologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Ribonucleotídeo Redutases/isolamento & purificação , Ribonucleotídeo Redutases/metabolismo , Relação Estrutura-Atividade , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Células Tumorais Cultivadas
8.
Inorg Chem ; 54(12): 5691-706, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26030801

RESUMO

Mononuclear nickel(II), copper(II), and manganese(III) complexes with a noninnocent tetradentate Schiff base ligand containing a disiloxane unit were prepared in situ by reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane followed by addition of the appropriate metal(II) salt. The ligand H2L resulting from these reactions is a 2:1 condensation product of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane. The resulting metal complexes, NiL·0.5CH2Cl2, CuL·1.5H2O, and MnL(OAc)·0.15H2O, were characterized by elemental analysis, spectroscopic methods (IR, UV-vis, X-band EPR, HFEPR, (1)H NMR), ESI mass spectrometry, and single crystal X-ray diffraction. Taking into account the well-known strong stabilizing effects of tert-butyl groups in positions 3 and 5 of the aromatic ring on phenoxyl radicals, we studied the one-electron and two-electron oxidation of the compounds using both experimental (chiefly spectroelectrochemistry) and computational (DFT) techniques. The calculated spin-density distribution and localized orbitals analysis revealed the oxidation locus and the effect of the electrochemical electron transfer on the molecular structure of the complexes, while time-dependent DFT calculations helped to explain the absorption spectra of the electrochemically generated species. Hyperfine coupling constants, g-tensors, and zero-field splitting parameters have been calculated at the DFT level of theory. Finally, the CASSCF approach has been employed to theoretically explore the zero-field splitting of the S = 2 MnL(OAc) complex for comparison purposes with the DFT and experimental HFEPR results. It is found that the D parameter sign strongly depends on the metal coordination geometry.


Assuntos
Complexos de Coordenação/química , Silanos/química , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Cobre/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Espectroscopia de Ressonância Magnética , Manganês/química , Estrutura Molecular , Níquel/química , Oxirredução , Fenóis , Bases de Schiff/química , Espectrometria de Massas por Ionização por Electrospray
9.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683677

RESUMO

Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption-desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustained release trend. The in vitro cytotoxicity was evaluated on NDHF, MeWo and HeLa cell lines by CellTiter-Glo assay, revealing strong cytotoxic effects in all of the loaded silica at low equivalent Dox concentration and selectivity for cancer cells. Atypical applications of each MSN as intravaginal, topical or oral Dox administration route could be proposed.

10.
Nanomaterials (Basel) ; 12(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745427

RESUMO

Active elements made of Ti50Ni45Cu5 shape memory alloy (SMA) were martensitic at room temperature (RT) after hot rolling with instant water quenching. These pristine specimens were subjected to two thermomechanical training procedures consisting of (i) free recovery shape memory effect (FR-SME) and (ii) work generating shape memory effect (WG-SME) under constant stress as well as dynamic bending and RT static tensile testing (TENS). The structural-functional changes, caused by the two training procedures as well as TENS were investigated by various experimental techniques, including differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), and atomic force microscopy (AFM). Fragments cut from the active regions of trained specimens or from the elongated gauges of TENS specimens were analyzed by DSC, XRD, and AFM. The DSC thermograms revealed the shift in critical transformation temperatures and a diminution in specific absorbed enthalpy as an effect of training cycles. The DMA thermograms of pristine specimens emphasized a change of storage modulus variation during heating after the application of isothermal dynamical bending at RT. The XRD patterns and AMF micrographs disclosed the different evolution of martensite plate variants as an effect of FR-SME cycling and of being elongated upon convex surfaces or compressed upon concave surfaces of bent specimens. For illustrative reasons, the evolution of unit cell parameters of B19' martensite, as a function of the number of cycles of FR-SME training, upon concave regions was discussed. AFM micrographs emphasized wider and shallower martensite plates on the convex region as compared to the concave one. With increasing the number of FR-SME training cycles, plates' heights decreased by 84-87%. The results suggest that FR-SME training caused marked decreases in martensite plate dimensions, which engendered a decrease in specific absorbed enthalpy during martensite reversion.

11.
Pharmaceutics ; 14(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559331

RESUMO

Two chemical motifs of interest for medicinal chemistry, silatrane as 1-(3-aminopropyl) silatrane (SIL M), and nitro group attached in position 5 to salicylaldehyde, are coupled in a new structure, 1-(3-{[(2-hydroxy-5-nitrophenyl)methylidene]amino}propyl)silatrane (SIL-BS), through an azomethine moiety, also known as a versatile pharmacophore. The high purity isolated compound was structurally characterized by an elemental, spectral, and single crystal X-ray diffraction analysis. Given the structural premises for being a biologically active compound, different specific techniques and protocols have been used to evaluate their in vitro hydrolytic stability in simulated physiological conditions, the cytotoxicity on two cancer cell lines (HepG2 and MCF7), and protein binding ability-with a major role in drug ADME (Absorption, Distribution, Metabolism and Excretion), in parallel with those of the SIL M. While the latter had a good biocompatibility, the nitro-silatrane derivative, SIL-BS, exhibited a higher cytotoxic activity on HepG2 and MCF7 cell lines, performance assigned, among others, to the known capacity of the nitro group to promote a specific cytotoxicity by a "activation by reduction" mechanism. Both compounds exhibited increased bio- and muco-adhesiveness, which can favor an optimized therapeutic effect by increased drug permeation and residence time in tumor location. Additional benefits of these compounds have been demonstrated by their antimicrobial activity on several fungi and bacteria species. Molecular docking computations on Human Serum Albumin (HSA) and MPRO COVID-19 protease demonstrated their potential in the development of new drugs for combined therapy.

12.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 11): m1600-1, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22219829

RESUMO

The asymmetric unit of the title compound, [Fe(C(3)H(4)N(2))(6)]SO(4)·2C(3)H(4)N(2), contains two complex cations, two sulfate anions and four imidazole mol-ecules. In both cations, the Fe(II) atom is coordinated by six monodentate imidazole ligands and exhibits a slightly distorted octa-hedral coordination geometry. The Fe-N distances [2.184 (4)-2.218 (4) Å] point to a high-spin state of the Fe(2+) ions. N-H⋯O hydrogen bonds between the ionic components generate a three-dimensional framework containing corrugated channels along [001], which are filled by N-H⋯N hydrogen-bonded imidazole chains.

13.
Dalton Trans ; 50(39): 13841-13858, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34522937

RESUMO

A series of metal salen complexes, original in view of the presence in their structure of a highly flexible and hydrophobic spacer, were prepared on the basis of the reaction of 1,3-bis(3-aminopropyl)tetramethyldisiloxane with 3,5-dichloro-, 3,5-dibromo- and 3-hydroxy-salicylaldehyde and various metal ions (Co2+, Ni2+, Cu2+ and Zn2+). The isolated products were completely characterized from the structural point of view by FTIR, NMR, elemental analysis and single crystal X-ray diffraction, and further investigated from the perspective of the behavior induced mainly by the structural peculiarities. Emphasis is placed on self-assembly properties, both in bulk and in solution, depending on temperature, solvent nature and concentration, including thermotropic and lyotropic liquid crystals (LC). LCs that appear in the form of nematic toroidal droplets have been fully demonstrated by polarized optical microscopy (POM), differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS) and fluorescence anisotropy studies. The fluorescence analysis results revealed the aggregation-induced emission (AIE) phenomenon, where the emission occurs only for liquid crystals, with a few exceptions. Because these complexes can exist in both amorphous and crystalline states, it raised the question of how properties, such as electrical, change when switching from one state to another. These were well highlighted by DSC, BDS, PXRD, FTIR and fluorescence anisotropy.

14.
Polymers (Basel) ; 13(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065717

RESUMO

Polydimethylsiloxane (PDMS), in spite of its well-defined helical structure, is an amorphous fluid even at extremely high molecular weights. The cause of this behavior is the high flexibility of the siloxane backbone and the lack of intermolecular interactions attributed to the presence of methyl groups. These make PDMS incompatible with almost any organic or inorganic component leading to phase separation in siloxane-siloxane copolymers containing blocks with polar organic groups and in siloxane-organic copolymers, where dimethylsiloxane segments co-exist with organic ones. Self-assembly at the micro- or nanometric scale is common in certain mixed structures, including micelles, vesicles, et cetera, manifesting reversibly in response to an external stimulus. Polymers with a very high degree of ordering in the form of high-quality crystals were obtained when siloxane/silane segments co-exist with coordinated metal blocks in the polymer chain. While in the case of coordination of secondary building units (SBUs) with siloxane ligands 1D chains are formed; when coordination is achieved in the presence of a mixture of ligands, siloxane and organic, 2D structures are formed in most cases. The Romanian research group's results regarding these aspects are reviewed: from the synthesis of classic, amorphous silicone products, to their adaptation for use in emerging fields and to new self-assembled or highly ordered structures with properties that create perspectives for the use of silicones in hitherto unexpected areas.

15.
Acta Crystallogr C Struct Chem ; 76(Pt 5): 419-426, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32367822

RESUMO

The preformed nickel(II) complex of the 14-membered macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane (cyclam, L), when treated with 4,4'-(dimethylsilanediyl)diphthalic acid (H4A) in a DMF/H2O mixture (4:1 v/v) under heating, leads to [Ni(L)]3(HA)2·3DMF (I·DMF). Redissolution of this compound in a DMF/H2O/MeOH mixture (4:1:30 v/v/v) with mild acidification under gentle heating results in the formation of a similar compound but containing water and methanol molecules of crystallization, [Ni(L)]3(HA)2·5H2O·2MeOH (II·H2O). At lower temperature and concentration of reactants and longer reaction time, single crystals of composition {[{Ni(L)}3(HA)2]·4CH3OH}n (II·MeOH) were isolated. Single-crystal X-ray diffraction analysis of this compound, which, according to PXRD is isostructural with II·H2O but different from I·DMF, revealed its two-dimensional (2D) polymeric structure, i.e. poly[[bis{µ3-4-[(4-carboxy-3-carboxylatophenyl)dimethylsilyl]benzene-1,2-dicarboxylato-κ3O1:O2:O3'}tris(1,4,8,11-tetraazacyclotetradecane-κ4N)trinickel(II)] methanol tetrasolvate], {[Ni3(C18H13O8Si)2(C10H24N4)3]·4CH3OH}n. It is built up of the monoprotonated tricarboxylate HA3- ligand coordinated in a monodentate manner in the axial positions of two crystallographically independent NiII cations, one of which is located on a crystallographic inversion centre. Both metal ions adopt a slightly tetragonally elongated trans-N4O2 octahedral geometry. The compound has a lamellar structure with polymeric layers oriented parallel to the (10-2) plane, which are in turn linked via hydrogen bonds involving protonated carboxylic acid groups of the ligand. Bulk compounds I·DMF and II·H2O were characterized by FT-IR and diffuse reflectance spectroscopy and thermogravimetry, which provide evidence of their structural differences.

16.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 6): 929-932, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32523766

RESUMO

The asymmetric unit of the title compound, catena-poly[[[(1,4,8,11-tetra-aza-cyclo-tetra-decane-κ4 N 1,N 4,N 8,N 11)nickel(II)]-µ-4,4'-(di-phenyl-silanedi-yl)dibenz-o-ato-κ2 O:O'] sesquihydrate], {[Ni(C26H18O4Si)(C10H24N4)]·1.5H2O} n , consists of the halves of the centrosymmetric macrocyclic cation and the C 2-symmetric di-carboxyl-ate dianion and of the water mol-ecule of crystallization. The Ni2+ ion is coordinated by the four secondary N atoms of the macrocyclic ligand characterized by the most energetically favourable trans-III conformation and two mutually trans O atoms of the carboxyl-ate, forming a slightly tetra-gonally elongated trans-N4O2 octa-hedron. The crystals are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] direction. Each polymeric chain is bonded to four neighbouring ones via water mol-ecules providing O-H⋯O hydrogen bonds to the non-coordinated carboxyl O atoms to form a three-dimensional supra-molecular network.

17.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 3): 446-451, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148892

RESUMO

The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetra-aza-cyclo-tetra-decane-κ4 N 1,N 4,N 8,N 11)nickel(II)]-µ-1,3-bis-(3-carboxyl-ato-prop-yl)tetra-methyl-disiloxane-κ2 O:O'], [Ni(C10H24O5Si2)(C12H24N4)] n (I), and catena-poly[[[(1,4,8,11-tetra-aza-cyclo-tetra-decane-κ4 N 1,N 4,N 8,N 11)nickel(II)]-µ-4-({[(3-carb-oxy-prop-yl)di-methyl-sil-yl]-oxy}di-methyl-sil-yl)butano-ato-κ2 O:O'] per-chlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4} n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxyl-ate in a slightly tetra-gonally distorted trans-NiN4O2 octa-hedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxyl-ate O atoms, thus forming a three-dimensional supra-molecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carb-oxy-lic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (11) plane.

18.
Dalton Trans ; 48(18): 5909-5922, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30638234

RESUMO

Three dimanganese(iii) complexes have been synthesised and fully characterised by standard spectroscopic methods and spectroelectrochemistry. Each MnIII ion is chelated by a salen type ligand (H2L), but there is variation in the bridging group: LMn(OOCCH[double bond, length as m-dash]CHCOO)MnL, LMn(OOCC6H4COO)MnL, and LMn(OOCC6H4C6H4COO)MnL. X-ray diffraction revealed an axial compression of each six-coordinate high-spin d4 MnIII ion, which is a Jahn-Teller-active ion. Temperature dependent magnetic susceptibility and variable temperature-variable field (VTVH) magnetisation measurements, as well as high-frequency and -field EPR (HFEPR) spectroscopy were used to accurately describe the magnetic properties of the complexes, not only the single-ion spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E, but also the exchange interaction constant J between the two ions, which has been seldom determined for a di-MnIII complex, particularly when there is more than a single bridging atom. Quantum chemical calculations reproduced well the electronic and geometric structure of these unusual complexes, and, in particular, their electronic absorption spectra along with the spin Hamiltonian and exchange parameters.

19.
J Hazard Mater ; 341: 390-403, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28806559

RESUMO

A series of elastomers, either natural or synthetic (some of them commercial, while others prepared in the laboratory), suitable for use as active elements in devices for wave energy harvesting, were evaluated concerning their behavior and effects on the marine environment. In this aim, the elastomer films, initially evaluated regarding their aspect, structure, surface wettability, and tolerance of microorganisms growth, were immersed in synthetic seawater (SSW) within six months for assessing compounds released. There were analyzed the changes occurred both in the elastomers and salt water in which they were immersed. For this, water samples taken at set time intervals were analyzed by using a sequence of sensitive spectral techniques: UV-vis, IR, and in relevant cases 1H NMR and electrospray ionization mass spectrometry (ESI-MS), able to detect and identify organic compounds, while after six months, they were also investigated from the point of view of aspect, presence of metal traces, pH, and biological activity. The changes in aspect, structure and morphology of the dielectric films at the end of the dipping period were also evaluated by visual inspection, IR spectroscopy by using spectral subtraction method, and SEM-EDX technique.

20.
Dalton Trans ; 46(6): 1789-1793, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28120985

RESUMO

A new iron(iii)-centred ferric wheel Fe⊂{Fe6} of the formula [Fe7(H2L)6(NCS)6](ClO4)3·10H2O, where H4L = N,N'-bis(3-carboxylsalicylidene)-1,3-bis(3-aminopropyl)tetramethyldisiloxane, was synthesised and fully characterised. 57Fe Mössbauer spectra indicate the presence of high spin (S = 5/2) Fe3+ cations adopting a slightly different coordination environment in agreement with the X-ray diffraction structure. There are competing antiferromagnetic exchange interactions along the rim (J1 = -1.00 cm-1) and the radius (J2 = -1.46 cm-1) of the wheel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA