Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(25): 5656-5672.e21, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029746

RESUMO

Molecular signals interact in networks to mediate biological processes. To analyze these networks, it would be useful to image many signals at once, in the same living cell, using standard microscopes and genetically encoded fluorescent reporters. Here, we report temporally multiplexed imaging (TMI), which uses genetically encoded fluorescent proteins with different clocklike properties-such as reversibly photoswitchable fluorescent proteins with different switching kinetics-to represent different cellular signals. We linearly decompose a brief (few-second-long) trace of the fluorescence fluctuations, at each point in a cell, into a weighted sum of the traces exhibited by each fluorophore expressed in the cell. The weights then represent the signal amplitudes. We use TMI to analyze relationships between different kinase activities in individual cells, as well as between different cell-cycle signals, pointing toward broad utility throughout biology in the analysis of signal transduction cascades in living systems.


Assuntos
Proteínas , Transdução de Sinais , Animais , Humanos , Camundongos , Linhagem Celular , Corantes Fluorescentes , Microscopia de Fluorescência/métodos , Fosforilação , Sobrevivência Celular
2.
Cell ; 183(6): 1682-1698.e24, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33232692

RESUMO

In order to analyze how a signal transduction network converts cellular inputs into cellular outputs, ideally one would measure the dynamics of many signals within the network simultaneously. We found that, by fusing a fluorescent reporter to a pair of self-assembling peptides, it could be stably clustered within cells at random points, distant enough to be resolved by a microscope but close enough to spatially sample the relevant biology. Because such clusters, which we call signaling reporter islands (SiRIs), can be modularly designed, they permit a set of fluorescent reporters to be efficiently adapted for simultaneous measurement of multiple nodes of a signal transduction network within single cells. We created SiRIs for indicators of second messengers and kinases and used them, in hippocampal neurons in culture and intact brain slices, to discover relationships between the speed of calcium signaling, and the amplitude of PKA signaling, upon receiving a cAMP-driving stimulus.


Assuntos
Corantes Fluorescentes/metabolismo , Genes Reporter , Imagem Óptica , Transdução de Sinais , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Células Piramidais/metabolismo
3.
PLoS Biol ; 18(11): e3000965, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33232322

RESUMO

Near-infrared (NIR) genetically encoded calcium ion (Ca2+) indicators (GECIs) can provide advantages over visible wavelength fluorescent GECIs in terms of reduced phototoxicity, minimal spectral cross talk with visible light excitable optogenetic tools and fluorescent probes, and decreased scattering and absorption in mammalian tissues. Our previously reported NIR GECI, NIR-GECO1, has these advantages but also has several disadvantages including lower brightness and limited fluorescence response compared to state-of-the-art visible wavelength GECIs, when used for imaging of neuronal activity. Here, we report 2 improved NIR GECI variants, designated NIR-GECO2 and NIR-GECO2G, derived from NIR-GECO1. We characterized the performance of the new NIR GECIs in cultured cells, acute mouse brain slices, and Caenorhabditis elegans and Xenopus laevis in vivo. Our results demonstrate that NIR-GECO2 and NIR-GECO2G provide substantial improvements over NIR-GECO1 for imaging of neuronal Ca2+ dynamics.


Assuntos
Cálcio/metabolismo , Imagem Óptica/métodos , Animais , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Indicadores e Reagentes , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Camundongos , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Optogenética , Engenharia de Proteínas , Espectroscopia de Luz Próxima ao Infravermelho , Xenopus laevis/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(50): E10799-E10808, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29162696

RESUMO

Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.


Assuntos
Microscopia/métodos , Peixe-Zebra/anatomia & histologia , Animais , Encéfalo/ultraestrutura , Núcleo Celular/ultraestrutura , Biologia do Desenvolvimento/métodos , Larva/anatomia & histologia , Neurociências/métodos , Sinapses/ultraestrutura , Peixe-Zebra/embriologia
5.
Nat Biotechnol ; 41(5): 640-651, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36593405

RESUMO

Observing cellular physiological histories is key to understanding normal and disease-related processes. Here we describe expression recording islands-a fully genetically encoded approach that enables both continual digital recording of biological information within cells and subsequent high-throughput readout in fixed cells. The information is stored in growing intracellular protein chains made of self-assembling subunits, human-designed filament-forming proteins bearing different epitope tags that each correspond to a different cellular state or function (for example, gene expression downstream of neural activity or pharmacological exposure), allowing the physiological history to be read out along the ordered subunits of protein chains with conventional optical microscopy. We use expression recording islands to record gene expression timecourse downstream of specific pharmacological and physiological stimuli in cultured neurons and in living mouse brain, with a time resolution of a fraction of a day, over periods of days to weeks.


Assuntos
Microscopia , Neurônios , Camundongos , Animais , Humanos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA