Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ecotoxicol Environ Saf ; 223: 112570, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352581

RESUMO

BaP and DBP are ubiquitously and contemporaneously present in the environment. However, Current studies largely concentrate on the effects of a single pollutant (BaP or DBP). The liver is vital for biogenic activities. The effects of BaP and DBP co-exposure on liver remain unclear. Thus, we treated human normal liver cell (L02 cell) with BaP or/and DBP. We found that compared to individual exposure, co-exposure to BaP and DBP induced further increased levels of AST and ALT. BaP and DBP co-exposure caused further increased levels of IL-2, IL-6, and TNF-α, decreased IL-10 level, and a higher percentage of apoptotic cells and S-phase arrest cells. BaP and DBP co-exposure worsen the decrease of miR-122-5p level and chaos of SOCS1/STAT3 signaling. Dual-luciferase reporter gene assays showed that SOCS1 was a validated target of miR-122-5p. miR-122-5p overexpression alleviated the increased SOCS1 expression, decreased phospho-STAT3 expression, decreased IL-10 level, increased TNF-α levels, increased percentage of apoptosis and S-phase arrest, and cytotoxicity induced by BaP and DBP co-exposure in hepatocytes. These results suggested that miR-122-5p negatively regulated the synergistic effects on apoptosis and disorder of inflammatory factor secretion involved in hepatocyte injury caused by BaP and DBP co-exposure through targeting SOCS1/STAT3 signaling.


Assuntos
MicroRNAs , Apoptose , Hepatócitos/metabolismo , Humanos , MicroRNAs/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Fator de Necrose Tumoral alfa/genética
2.
Chemosphere ; 314: 137714, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592837

RESUMO

Dibutyl phthalate (DBP) and benzo(a)pyrene (BaP) are widespread environmental and foodborne contaminants that have detrimental effects on human health. Although people are often simultaneously exposed to DBP and BaP via the intake of polluted food and water, the combined effects on the kidney and potential mechanisms remain unclear. Hence, we treated rats with DBP and BaP for 90 days to investigate their effects on kidney histopathology and function. We also investigated the levels of paramount proteins and genes involved in pyroptosis and TLR4/NF-κB p65 signaling in the kidney. Our research showed that combined exposure to DBP and BaP triggered more severe histopathological and renal function abnormalities than in those exposed to DBP or BaP alone. Simultaneously, combined exposure to DBP and BaP enhanced the excretion of IL-1ß and IL-18, along with the release of LDH in rat renal tubular epithelial cells (RTECs). Moreover, combined exposure to DBP and BaP increased the expression of pyroptosis marker molecules, including NLRP3, ASC, cleaved-Caspase-1, and GSDMD. Meanwhile, the combination of DBP and BaP activated TLR4/NF-κB signaling in the kidney. Taken together, the combined exposure to DBP and BaP causes more severe kidney injury than that caused by DBP or BaP exposure separately. In addition, pyroptosis of RTECs regulated by TLR4/NF-κB signaling may add to the kidney damage triggered by combined exposure to DBP and BaP.


Assuntos
NF-kappa B , Piroptose , Ratos , Humanos , Animais , NF-kappa B/metabolismo , Dibutilftalato/farmacologia , Receptor 4 Toll-Like/genética , Rim/metabolismo , Células Epiteliais/metabolismo
3.
Sci Total Environ ; 881: 163460, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061049

RESUMO

Humans are often simultaneously exposed to benzo(a)pyrene (BaP) and dibutyl phthalate (DBP) through consumption of food and water. Yet, direct evidence of the link between BaP and DBP co-exposure and the risk of splenic injury is lacking. In the present study, we established the rats and primary splenic macrophages models to evaluate the effects of BaP or/and DBP exposure on spleen and underlying mechanisms. Compared to the single exposure or control groups, the co-exposure group showed more severe spleen damage and higher production of pro-inflammatory cytokines. Co-exposure to BaP and DBP resulted in a 1.79-fold, 2.11-fold and 1.9-fold increase in the M1 macrophage markers iNOS, NLRP3 (pyroptosis marker protein) and cathepsin B (CTSB), respectively, and a 0.8-fold decrease in the M2 macrophage marker Arg1 in vivo. The more prominent effects in perturbation of imbalance in M1/M2 polarization (iNOS, 2.25-fold; Arg1, 0.55-fold), pyroptosis (NLRP3, 1.43-fold), and excess CTSB (1.07-fold) in macrophages caused by BaP and DBP co-exposure in vitro were also found. Notably, MCC950 (the NLRP3-specific inhibitor) treatment attenuated the pro-inflammatory macrophage polarization and following pro-inflammatory cytokine production triggered by BaP and DBP co-exposure. Furthermore, CA-074Me (the CTSB-specific inhibitor) suppressed the macrophages pyroptosis, pro-inflammatory macrophage polarization, and secretion of pro-inflammatory cytokine induced by BaP and DBP co-exposure. In conclusion, this study indicates co-exposure to BaP and DBP poses a higher risk of spleen injury. Pro-inflammatory macrophage polarization regulated by pyroptosis involving CTSB underlies the spleen injury caused by BaP and DBP co-exposure.


Assuntos
Benzo(a)pireno , Baço , Animais , Ratos , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Citocinas/metabolismo , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Baço/metabolismo
4.
Chem Biol Interact ; 376: 110439, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878459

RESUMO

Anti-tuberculosis drug-induced liver injury (ATB-DILI) is a common serious adverse event observed during the clinical treatment of tuberculosis. However, the molecular mechanisms underlying ATB-DILI remain unclear. A recent study has indicated that ferroptosis and lipid peroxidation may be involved in liver injury. Therefore, this study aimed to investigate the role of ferroptosis in the molecular mechanisms underlying ATB-DILI. Our results showed that anti-TB drugs induced hepatocyte damage in vivo and in vitro and inhibited BRL-3A cell activity in a dose-dependent manner, accompanied by increased lipid peroxidation and reduced antioxidant levels. Moreover, ACSL4 expression and Fe2+ concentration significantly increased following anti-TB drug treatment. Interestingly, anti-TB drug-induced hepatocyte damage was reversed by ferrostatin-1 (Fer-1, a specific ferroptosis inhibitor). In contrast, treatment with erastin (a ferroptosis inducer) resulted in further elevation of ferroptosis indicators. Additionally, we also found that anti-TB drug treatment inhibited HIF-1α/SLC7A11/GPx4 signaling in vivo and in vitro. Notably, HIF-1α knockdown significantly enhanced anti-TB drug-induced ferroptotic events and the subsequent exacerbation of hepatocyte damage. In conclusion, our findings indicated that ferroptosis plays a crucial role in the development of ATB-DILI. Furthermore, anti-TB drug-induced hepatocyte ferroptosis was shown to be regulated by HIF-1α/SLC7A11/GPx4 signaling. These findings shed new light on the mechanisms underlying ATB-DILI and suggest novel therapeutic strategies for this disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Humanos , Sistema y+ de Transporte de Aminoácidos/genética , Antioxidantes , Hepatócitos , Peroxidação de Lipídeos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
5.
Int Immunopharmacol ; 99: 107938, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34371331

RESUMO

The liver is not only the main metabolic site of exogenous compounds and drugs, but also an important immune organ in the human body. When a large number of nonself substances (such as drugs, alcohol, pathogens, microorganisms and their metabolites) enter the liver, they will cause serious liver diseases, including liver fibrosis, liver cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Macrophages are the first line of defense against the invasion of exogenous pathogens and significant cellular components of the innate immune system. Macrophages have strong heterogeneity and plasticity. When different pathogens invade the body, they cause different types of polarization of macrophages through different molecular mechanisms. Notch signaling is considered to be the key regulator of the biological function of macrophages. Activating Notch signaling can regulate the differentiation of macrophages into M1 and play a role in promoting inflammation and antitumor activity, while blocking Notch signaling can polarize macrophages to M2, suppressing inflammation and promoting tumor growth. However, there are few studies on regulation of macrophage polarization by the Notch signaling pathway in liver diseases. Therefore, in this review, we will introduce the role of the Notch signaling pathway in regulating macrophage polarization in liver diseases.


Assuntos
Hepatopatias/metabolismo , Macrófagos/metabolismo , Receptores Notch/metabolismo , Animais , Diferenciação Celular , Citocinas/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Inflamação/metabolismo , Fígado , Ativação de Macrófagos , Macrófagos/classificação , Transdução de Sinais
6.
Toxicol Res (Camb) ; 9(4): 519-529, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32905139

RESUMO

Growing evidence indicates that arsenic can cause long-lasting and irreversible damage to the function of the human immune system. It is known that forkhead box protein 3(Foxp3), which is specifically expressed in regulatory T cells (Tregs), plays a decisive role in immunoregulation and is regulated by DNA methylation. While evidence suggests that epigenetic regulated Foxp3 is involved in the immune disorders caused by arsenic exposure, the specific mechanism remains unclear. In this study, after primary human lymphocytes were treated with different doses of NaAsO2, our results showed that arsenic induced the high expression of DNMT1 and Foxp3 gene promoter methylation level, thereby inhibiting the expression levels of Foxp3, followed by decreasing Tregs and reducing related anti-inflammatory cytokines, such as interleukin 10 (IL-10) and interleukin 10 (IL-35), and increasing the ratio of CD4+/CD8+ T cells in lymphocytes. Treatment with DNA methyltransferase inhibitor 5-Aza-CdR can notably inhibit the expression of DNMT1, effectively restoring the hypermethylation of the Foxp3 promoter region in primary human lymphocytes and upregulating the expression levels of Foxp3, balancing the ratio of CD4+/CD8+ T cells in lymphocytes. It also activates the secretion of anti-inflammatory cytokines and restores the immune regulatory functions of Tregs. In conclusion, our study provides limited evidence that DNMT1-mediated Foxp3 gene promoter hypermethylation is involved in immune dysfunction caused by arsenic in primary human lymphocytes. The study can provide a scientific basis for further understanding the arsenic-induced immune dysfunction in primary human lymphocytes.

7.
Drug Des Devel Ther ; 9: 4719-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26316710

RESUMO

Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.


Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Água Potável , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos Orgânicos/toxicidade , Poluentes Químicos da Água/toxicidade , Receptor fas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Proteína Ligante Fas/metabolismo , Feminino , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor fas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA