Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(4): 1782-1788, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33146444

RESUMO

The synthesis of a novel expanded π-conjugated system, namely benzotri(7-azaindole), BTAI, is reported. Its C3h symmetry along with the integration of six complementary donor and acceptor N-H⋅⋅⋅N hydrogen bonds in the conjugated structure promote the 2D self-assembly on Au(111) over extended areas. Besides, a perfect commensurability with the gold lattice endows the physisorbed molecular film with a remarkable stability. The structural features of BTAI result in two levels of surface chirality: Firstly, the molecules become chiral upon adsorption on the surface. Then, due to the favorable N-H⋅⋅⋅N hydrogen bond-directed self-assembly, along with the relative molecular rotation with respect to the substrate, supramolecular chirality manifests in two mirror enantiomorphous domains. Thus, the system undergoes spontaneous chiral resolution. LEED and STM assisted by theoretical simulations have been employed to characterize in detail these novel 2D conglomerates with relevant chiral properties for systems with C3h symmetry.

2.
Nano Lett ; 16(1): 218-26, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26675052

RESUMO

Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a ß-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.

3.
Nano Lett ; 15(6): 3840-4, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25955766

RESUMO

Via density functional theory based calculations we show that self-doping of the surface Dirac cones in three-dimensional Bi2X3 (X = Se, Te) topological insulators can be tuned by controlling the sequence of stacking defects in the crystal. Twin boundaries inside the Bi2X3 bulk drive either n- or p-type self-doping of the (0001) topological surface states, depending on the precise orientation of the twin. The surface doping may achieve values up to 300 meV and can be controlled by the number of defects and their relative position with respect to the surface. Its origin relies on the spontaneous polarization generated by the dipole moments associated with the lattice defects. Our findings open the route to the fabrication of Bi2X3 surfaces with tailored surface charge and spin densities in the absence of external electric fields. In addition, in a thin film geometry two-dimensional electron and hole Dirac gases with the same spin-helicity coexist at opposite surfaces.


Assuntos
Bismuto/química , Elétrons , Compostos de Selênio/química , Telúrio/química
4.
Phys Rev Lett ; 112(12): 126101, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724661

RESUMO

We have studied the mechanism of the partial dissociation of water on Ru(0001) by high resolution scanning tunneling microscopy (STM). The thermal evolution of water at submonolayer coverage has been tracked in the 110-145 K temperature range to identify the precursor structures for the partial dissociation. These were found to consist of hexagons arranged in thin stripes aligned along the close packed Ru [21¯1¯0] directions. The partially dissociated phase, on the other hand, contains a mixture of H2O and OH hexagons arranged into wider stripes and rotated by 30° with respect to the intact water stripes. The atomic structure of both types of stripes is determined with the aid of density functional theory and STM simulations, providing insights into the partial dissociation reaction path. The reaction is found to be exothermic by around 0.4 eV and initiating at the edges of the intact water stripes. Hydrogen atoms, from water dissociation or already present at the surface, are found to play an important role in the kinetics of the reactions.

5.
Nanoscale ; 15(7): 3566, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722788

RESUMO

Correction for 'Persistence of symmetry-protected Dirac points at the surface of the topological crystalline insulator SnTe upon impurity doping' by Olga Arroyo-Gascón et al., Nanoscale, 2022, 14, 7151-7162, https://doi.org/10.1039/D1NR07120C.

6.
Nanoscale ; 14(19): 7151-7162, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380135

RESUMO

We investigate the effect of a non-magnetic donor impurity located at the surface of the SnTe topological crystalline insulator. In particular, the changes on the surface states due to a Sb impurity atom are analyzed by means of ab initio simulations of pristine and impurity-doped SnTe. Both semi-infinite and slab geometries are considered within the first-principles approach. Furthermore, minimal and Green's function continuum models are proposed with the same goal. We find that the Dirac cones are shifted down in energy upon doping; this shift strongly depends on the position of the impurity with respect to the surface. In addition, we observe that the width of the impurity band presents an even-odd behavior by varying the position of the impurity. This behavior is related to the position of the nodes of the wave function with respect to the surface, and hence it is a manifestation of confinement effects. We compare slab and semi-infinite geometries within the ab initio approach, demonstrating that the surface states remain gapless and their spin textures are unaltered in the doped semi-infinite system. In the slab geometry, a gap opens due to hybridization of the states localized at opposite surfaces. Finally, by means of a continuum model, we extrapolate our results to arbitrary positions of the impurity, clearly showing a non-monotonic behavior of the Dirac cone.

7.
ACS Appl Energy Mater ; 5(9): 11835-11843, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36185812

RESUMO

The anomalous Nernst effect (ANE) is a thermomagnetic phenomenon with potential applications in thermal energy harvesting. While many recent works studied the approaches to increase the ANE coefficient of materials, relatively little effort was devoted to increasing the power supplied by the effect. Here, we demonstrate a nanofabricated device with record power density generated by the ANE. To accomplish this, we fabricate micrometer-sized devices in which the thermal gradient is 3 orders of magnitude higher than conventional macroscopic devices. In addition, we use Co/Pt multilayers, a system characterized by a high ANE thermopower (∼1 µV/K), low electrical resistivity, and perpendicular magnetic anisotropy. These innovations allow us to obtain power densities of around 13 ± 2 W/cm3. We believe that this design may find uses in harvesting wasted energy, e.g., in electronic devices.

8.
J Phys Condens Matter ; 34(47)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130609

RESUMO

Individual magnetic transition metal dopants in a solid host usually exhibit relatively small spin excitation energies of a few meV. Using scanning tunneling microscopy and inelastic electron tunneling spectroscopy (IETS) techniques, we have observed a high spin excitation energy around 36 meV for an individual Co substitutional dopant in ultrathin NaCl films. In contrast, the Cr dopant in the NaCl film shows much lower spin excitation energy around 2.5 meV. Electronic multiplet calculations combined with first-principles calculations confirm the spin excitation induced IETS, and quantitatively reveal the out-of-plane magnetic anisotropies for both Co and Cr. They also allow reproducing the experimentally observed redshift in the spin excitations of Co dimers and ascribe it to a charge and geometry redistribution.

9.
J Chem Phys ; 133(15): 154701, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20969413

RESUMO

The adsorption of phthalocyanines (Pc) to various surfaces has recently been reported to lead to a lowering of symmetry from C4 to C2 in scanning tunneling microscope (STM) images. Possible origins of the reduced symmetry involve the electronic structure or geometric deformation of the molecules. Here, the origin of the reduction is clarified from a comprehensive theoretical study of CoPc adsorbed on the Cu(111) surface along with the experimental STM data. Total energy calculations using different schemes for the exchange-correlation energy and STM simulations are compared against experimental data. We find that the symmetry reduction is only reproduced when van der Waals corrections are included into the formalism. It is caused by a deformation along the two perpendicular molecular axes, one of them coming closer to the surface by around 0.2 Å. An electronic structure analysis reveals (i) the relevance of the CoPc interaction with the Cu(111) surface state and (ii) that intramolecular features in dI/dV maps clearly discriminate a Co-derived state from the rest of the Pc states.

10.
J Am Chem Soc ; 131(51): 18425-34, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19947628

RESUMO

The initial stages of water adsorption on the Pd(111) and Ru(0001) surfaces have been investigated experimentally by scanning tunneling microscopy in the temperature range between 40 and 130 K, and theoretically with density functional theory (DFT) total energy calculations and scanning tunneling microscopy (STM) image simulations. Below 125 K, water dissociation does not occur at any appreciable rate, and only molecular films are formed. Film growth starts by the formation of flat hexamer clusters where the molecules bind to the metal substrate through the O-lone pair while making H-bonds with neighboring molecules. As coverage increases, larger networks of linked hexagons are formed with a honeycomb structure, which requires a fraction of the water molecules to have their molecular plane perpendicular to the metal surface with reduced water-metal interaction. Energy minimization favors the growth of networks with limited width. As additional water molecules adsorb on the surface, they attach to the periphery of existing islands, where they interact only weakly with the metal substrate. These molecules hop along the periphery of the clusters at intermediate temperatures. At higher temperatures, they bind to the metal to continue the honeycomb growth. The water-Ru interaction is significantly stronger than the water-Pd interaction, which is consistent with the greater degree of hydrogen-bonded network formation and reduced water-metal bonding observed on Pd relative to Ru.

11.
J Chem Phys ; 129(24): 244103, 2008 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-19123491

RESUMO

The interaction between carbon and hydrogen atoms on a Ru(0001) surface was studied using scanning tunneling microscopy (STM), density functional theory (DFT) and STM image calculations. Formation of CH species by reaction between adsorbed H and C was observed to occur readily at 100 K. When the coverage of H increased new complexes of the form of CH+nH (n=1, 2, and 3) were observed. These complexes, never observed before, might be precursors for further hydrogenation reactions. DFT analysis reveals that a considerable energy barrier exists for the CH+H-->CH(2) reaction.

12.
J Phys Chem B ; 122(2): 649-656, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28753310

RESUMO

We use scanning tunneling microscopy (STM) to investigate the spatial arrangement of carbon monoxide (CO) and hydrogen (H) coadsorbed on a model catalyst surface, Ru(0001). We find that at cryogenic temperatures, CO forms small triangular islands of up to 21 molecules with hydrogen segregated outside of the islands. Furthermore, whereas for small island sizes (3-6 CO molecules) the molecules adsorb at hcp sites, a registry shift toward top sites occurs for larger islands (10-21 CO molecules). To characterize the CO structures better and to help interpret the data, we carried out density functional theory (DFT) calculations of the structure and simulations of the STM images, which reveal a delicate interplay between the repulsions of the different species.

13.
Nat Commun ; 7: 13076, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708263

RESUMO

Carbon and silicon pentagonal low-dimensional structures attract a great interest as they may lead to new exotic phenomena such as topologically protected phases or increased spin-orbit effects. However, no pure pentagonal phase has yet been realized for any of them. Here we unveil through extensive density functional theory calculations and scanning tunnelling microscope simulations, confronted to key experimental facts, the hidden pentagonal nature of single- and double-strand chiral Si nano-ribbons perfectly aligned on Ag(110) surfaces whose structure has remained elusive for over a decade. Our study reveals an unprecedented one-dimensional Si atomic arrangement solely comprising almost perfect alternating pentagons residing in the missing row troughs of the reconstructed surface. We additionally characterize the precursor structure of the nano-ribbons, which consists of a Si cluster (nano-dot) occupying a silver di-vacancy in a quasi-hexagonal configuration. The system thus materializes a paradigmatic shift from a silicene-like packing to a pentagonal one.

14.
J Phys Chem Lett ; 6(9): 1780-4, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26263349

RESUMO

Determining the molecular structure of CO2 adsorbed on metal surfaces and its mutual interactions is important to understand its catalytic conversion reactions. Here, we study CO2 adsorption on Ru(0001) using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Adsorbed at 77 K, the CO2 molecules form mainly disordered structures at submonolayer coverage, except for small (2 × 2) domains. The adsorbed molecules are no longer linear as in the gas phase, but instead, they adopt a "V"-shape geometry with the carbon atom occupying three-fold hcp hollow sites and possess three symmetry-equivalent orientations. Annealing to 250 K causes partial desorption of the molecules, while the remaining molecules form trimers of three different configurations with different interaction energies determined by their relative orientations. The "strong"-interacting trimer shows a cyclic structure, about 40 meV more stable than the "weak"-interacting trimer that is composed of three parallel molecules.

15.
ACS Nano ; 8(12): 12110-9, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25405264

RESUMO

Thermoelectric effects in tunnel junctions are currently being revisited for their prospects in cooling and energy harvesting applications, and as sensitive probes of electron transport. Quantitative interpretation of these effects calls for advances in both theory and experiment, particularly with respect to the electron transmission probability across a tunnel barrier which encodes the energy dependence and the magnitude of tunneling thermopower. Using noble metal surfaces as clean model systems, we demonstrate a comparatively simple and quantitative approach where the transmission probability is directly measured experimentally. Importantly, we estimate not only thermovoltage, but also its energy and temperature dependencies. We have thus resolved surface-state enhancement of thermovoltage, which manifests as 10-fold enhancement of thermopower on terraces of the Ag(111) surface compared to single-atom step sites and surface-supported nanoparticles. To corroborate experimental analysis, the methodology was applied to the transmission probability obtained from first-principles calculations for the (111) surfaces of the three noble metals, finding good agreement between overall trends. Surface-state effects themselves point to a possibility of achieving competitive performance of all-metal tunnel junctions when compared to molecular junctions. At the same time, the approach presented here opens up possibilities to investigate the properties of nominally doped or gated thermoelectric tunnel junctions as well as temperature gradient in nanometer gaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA