Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(46): e2308273120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931098

RESUMO

Elevational gradients are characterized by strong environmental changes within small geographical distances, providing important insights on the response of biological communities to climate change. Mountain biodiversity is particularly sensitive to climate change, given the limited capacity to colonize new areas and the competition from upshifting lowland species. Knowledge on the impact of climate change on mountain insect communities is patchy, but elevation is known to influence parasitic interactions which control insect communities and functions within ecosystems. We analyzed a European dataset of bristle flies, a parasitoid group which regulates insect herbivory in both managed and natural ecosystems. Our dataset spans six decades and multiple elevational bands, and we found marked elevational homogenization in the host specialization of bristle fly species through time. The proportion of specialized parasitoids has increased by ca. 70% at low elevations, from 17 to 29%, and has decreased by ca. 20% at high elevations, from 48 to 37%. As a result, the strong elevational gradient in bristle fly specialization observed in the 1960s has become much flatter over time. As climate warming is predicted to accelerate, the disappearance of specialized parasitoids from high elevations might become even faster. This parasitoid homogenization can reshape the ecological function of mountain insect communities, increasing the risk of herbivory outbreak at high elevations. Our results add to the mounting evidence that symbiotic species might be especially at risk from climate change: Monitoring the effects of these changes is urgently needed to define effective conservation strategies for mountain biodiversity.


Assuntos
Altitude , Ecossistema , Animais , Biodiversidade , Insetos , Geografia
2.
Cladistics ; 39(4): 337-357, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37078455

RESUMO

Dance flies and relatives (Empidoidea) are a diverse and ecologically important group of Diptera in nearly all modern terrestrial ecosystems. Their fossil record, despite being scattered, attests to a long evolutionary history dating back to the early Mesozoic. Here, we describe seven new species of Empidoidea from Cretaceous Kachin amber inclusions, assigning them to the new genus Electrochoreutes gen.n. (type species: Electrochoreutes trisetigerus sp.n.) based on unique apomorphies among known Diptera. Like many extant dance flies, the males of Electrochoreutes are characterized by species-specific sexually dimorphic traits, which are likely to have played a role in courtship. The fine anatomy of the fossils was investigated through high-resolution X-ray phase-contrast microtomography to reconstruct their phylogenetic affinities within the empidoid clade, using cladistic reasoning. Morphology-based phylogenetic analyses including a selection of all extant family- and subfamily-ranked empidoid clades along with representatives of all extinct Mesozoic genera, were performed using a broad range of analytical methods (maximum parsimony, maximum-likelihood and Bayesian inference). These analyses converged in reconstructing Electrochoreutes as a stem-group representative of the Dolichopodidae, suggesting that complex mating rituals evolved in this lineage during the Cretaceous.


Assuntos
Dípteros , Animais , Masculino , Dípteros/genética , Filogenia , Ecossistema , Teorema de Bayes , Fósseis
3.
Oecologia ; 198(4): 1019-1029, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35380272

RESUMO

Managed and wild pollinators often cohabit in both managed and natural ecosystems. The western honeybee, Apis mellifera, is the most widespread managed pollinator species. Due to its density and behaviour, it can potentially influence the foraging activity of wild pollinators, but the strength and direction of this effect are often context-dependent. Here, we observed plant-pollinator interactions in 51 grasslands, and we measured functional traits of both plants and pollinators. Using a multi-model inference approach, we explored the effects of honeybee abundance, temperature, plant functional diversity, and trait similarity between wild pollinators and the honeybee on the resource overlap between wild pollinators and the honeybee. Resource overlap decreased with increasing honeybee abundance only in plant communities with high functional diversity, suggesting a potential diet shift of wild pollinators in areas with a high variability of flower morphologies. Moreover, resource overlap increased with increasing trait similarity between wild pollinators and the honeybee. In particular, central-place foragers of family Apidae with proboscis length similar to the honeybee exhibited the highest resource overlap. Our results underline the importance of promoting functional diversity of plant communities to support wild pollinators in areas with a high density of honeybee hives. Moreover, greater attention should be paid to areas where pollinators possess functional traits similar to the honeybee, as they are expected to be more prone to potential competition with this species.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Dieta , Flores , Fenótipo
4.
Mol Phylogenet Evol ; 139: 106358, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30584917

RESUMO

We reconstructed phylogenetic relationships within the diverse parasitoid fly family Tachinidae using four nuclear loci (7800 bp) and including an exceptionally large sample of more than 500 taxa from around the world. The position of the earthworm-parasitizing Polleniinae (Calliphoridae s.l.) as sister to Tachinidae is strongly supported. Our analyses recovered each of the four tachinid subfamilies and most recognized tribes, with some important exceptions in the Dexiinae and Tachininae. Most notably, the tachinine tribes Macquartiini and Myiophasiini form a clade sister to all other Tachinidae, and a clade of Palpostomatini is reconstructed as sister to Dexiinae + Phasiinae. Although most nodes are well-supported, relationships within several lineages that appear to have undergone rapid episodes of diversification (basal Dexiinae and Tachininae, Blondeliini) were poorly resolved. Reconstructions of host use evolution are equivocal, but generally support the hypothesis that the ancestral host of tachinids was a beetle and that subsequent host shifts to caterpillars may coincide with accelerated diversification. Evolutionary reconstructions of reproductive strategy using alternative methods were incongruent, however it is most likely that ancestral tachinids possessed unincubated, thick shelled eggs from which incubated eggs evolved repeatedly, potentially expanding available host niches. These results provide a broad foundation for understanding the phylogeny and evolution of this important family of parasitoid insects. We hope it will serve as a framework to be used in concert with morphology and other sources of evidence to revise the higher taxonomic classification of Tachinidae and further explore their evolutionary history and diversification.


Assuntos
Dípteros/classificação , Dípteros/genética , Evolução Molecular , Filogenia , Animais , Biodiversidade , Interações Hospedeiro-Parasita
5.
Ecology ; 100(3): e02619, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636292

RESUMO

Plants grow in communities where they interact with other plants and with other living organisms such as pollinators. On the one hand, studies of plant-plant interactions rarely consider how plants interact with other trophic levels such as pollinators. On the other, studies of plant-animal interactions rarely deal with interactions within trophic levels such as plant-plant competition and facilitation. Thus, to what degree plant interactions affect biodiversity and ecological networks across trophic levels is poorly understood. We manipulated plant communities driven by foundation species facilitation and sampled plant-pollinator networks at fine spatial scale in a field experiment in Sierra Nevada, Spain. We found that plant-plant facilitation shaped pollinator diversity and structured pollination networks. Nonadditive effects of plant interactions on pollinator diversity and interaction diversity were synergistic in one foundation species networks while they were additive in another foundation species. Nonadditive effects of plant interactions were due to rewiring of pollination interactions. In addition, plant facilitation had negative effects on the structure of pollination networks likely due to increase in plant competition for pollination. Our results empirically demonstrate how different network types are coupled, revealing pervasive consequences of interaction chains in diverse communities.


Assuntos
Biodiversidade , Polinização , Animais , Insetos , Plantas , Espanha
6.
Cladistics ; 35(6): 605-622, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34618931

RESUMO

The Calyptratae, one of the most species-rich fly clades, only originated and diversified after the Cretaceous-Palaeogene extinction event and yet exhibit high species diversity and a diverse array of life history strategies including predation, phytophagy, saprophagy, haematophagy and parasitism. We present the first phylogenomic analysis of calyptrate relationships. The analysis is based on 40 species representing all calyptrate families and on nucleotide and amino acid data for 1456 single-copy protein-coding genes obtained from shotgun sequencing of transcriptomes. Topologies are overall well resolved, robust and largely congruent across trees obtained with different approaches (maximum parsimony, maximum likelihood, coalescent-based species tree, four-cluster likelihood mapping). Many nodes have 100% bootstrap and jackknife support, but the true support varies by more than one order of magnitude [Bremer support from 3 to 3427; random addition concatenation analysis (RADICAL) gene concatenation size from 10 to 1456]. Analyses of a Dayhoff-6 recoded amino acid dataset also support the robustness of many clades. The backbone topology Hippoboscoidea+(Fanniidae+(Muscidae+((Anthomyiidae-Scathophagidae)+Oestroidea))) is strongly supported and most families are monophyletic (exceptions: Anthomyiidae and Calliphoridae). The monotypic Ulurumyiidae is either alone or together with Mesembrinellidae as the sister group to the rest of Oestroidea. The Sarcophagidae are sister to Mystacinobiidae+Oestridae. Polleniinae emerge as sister group to Tachinidae and the monophyly of the clade Calliphorinae+Luciliinae is well supported, but the phylogenomic data cannot confidently place the remaining blowfly subfamilies (Helicoboscinae, Ameniinae, Chrysomyinae). Compared to hypotheses from the Sanger sequencing era, many clades within the muscoid grade are congruent but now have much higher support. Within much of Oestroidea, Sanger era and phylogenomic data struggle equally with regard to finding well-supported hypotheses.

7.
Oecologia ; 188(1): 193-202, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29797077

RESUMO

Elevational gradients are characterized by strong abiotic variation within small geographical distances and provide a powerful tool to evaluate community response to variation in climatic and other environmental factors. We explored how temperature and habitat diversity shape the diversity of holometabolous predator and parasitoid insects along temperate elevational gradients in the European Alps. We surveyed insect communities along 12 elevational transects that were selected to separate effects of temperature from those of habitat diversity. Pitfall traps and pan traps were placed every 100 m of elevation increment along the transects ranging from 120 to 2200 m a.s.l. Sampling took place once a month from June to September 2015. Four groups characterized by having at least one life stage behaving as predator or parasitoid were examined: tachinids (Diptera), hoverflies (Diptera), sphecids (Hymenoptera) and ground beetles (Coleoptera). Species richness and evenness changed with elevation, but the shape and direction of the elevation-diversity patterns varied between groups. The effect of temperature on species richness was positive for all groups except for hoverflies. Habitat diversity did not affect species richness, while it modulated the evenness of most groups. Often, elevational patterns of species richness and evenness were contrasting. Our study indicates that natural enemies characterized by diverse ecological requirements can be differentially affected by temperature and habitat diversity across the same elevational gradients. As climate warming is predicted to increase mean annual temperatures and exacerbate weather variability, it is also expected to strongly influence natural enemies and their ability to regulate herbivore populations.


Assuntos
Biodiversidade , Ecossistema , Altitude , Animais , Geografia , Insetos , Temperatura
8.
Cladistics ; 33(6): 557-573, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34724760

RESUMO

Processionary moths belong to a group of about 100 species well known for their social behaviour and their urticating systems. The genus Thaumetopoea s.l. includes about 15 species and has been divided into three genera (Helianthocampa, Thaumetopoea s.s., and Traumatocampa) in the last revision, based on key morphological features of the adults and on the host plants of the larvae. We performed a total evidence approach to resolve the phylogeny of the genus Thaumetopoea s.l., analysing all valid taxa included in this group, plus a broad array of close relatives. Thaumetopoea was monophyletic and supported by several apomorphies. Further subclades corroborated by synapomorphies were identified. Our phylogeny suggests that Thaumetopoea must be regarded as a single genus. The mapping of key life history traits on the total evidence tree allowed us to sketch a plausible identikit of the Thaumetopoea ancestor and to track the evolution of the genus. The ancestor originated in the eastern Mediterranean area, and used broadleaved host plants. Subsequently, a switch to conifers occurred, just once, in a large subclade. The ancestor pupated in the soil, like several current species, but in a few taxa this trait was lost, together with the related morphological adaptations.

10.
Mol Phylogenet Evol ; 88: 38-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25841383

RESUMO

Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and their relatives, we show that a small number of well-chosen nuclear protein-coding genes can successfully resolve even difficult phylogenetic problems.


Assuntos
Dípteros/classificação , Filogenia , Animais , Dípteros/genética , Genes de Insetos , Proteínas de Insetos/genética , Proteínas Mitocondriais/genética
11.
Zootaxa ; 3754: 450-60, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24869700

RESUMO

The new species Loewia papei sp. nov. from southern Anatolia (Turkey) is described, illustrated and compared with congeners. A brief diagnosis of Loewia Egger is provided and the systematics of the genus are discussed. Loewia nudigena Mesnil, 1972 is fixed as the type species of Fortisia Rondani, 1861 (junior synonym of Loewia). A full list of previously known valid species of Loewia is provided along with information on primary types, type repositories (where known), and type localities. A lectotype is designated for Thrychogena brevifrons Rondani, 1856 (= Loewia brevifrons (Rondani, 1856)).


Assuntos
Dípteros/classificação , Animais , Dípteros/anatomia & histologia , Feminino , Masculino , Turquia
12.
Biodivers Data J ; 11: e101327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215463

RESUMO

Background: The present paper describes a sampling-event dataset on species belonging to two families of Diptera (Syrphidae and Asilidae) collected between 2012 and 2019 in two Italian beech forests located in the central Apennines. The reference dataset consists of an annotated checklist and has been published on Zenodo. Syrphidae and Asilidae are two widespread and key ecological groups, including predator, pollinator and saproxylic species. Despite their pivotal role in both natural and man-made ecosystems, these families are still poorly known in terms of local distribution and open-access sampling-event data are rare in Italy. New information: This open-access dataset includes 2,295 specimens for a total of 21 Asilidae and 65 Syrphidae species. Information about the collection (e.g. place, date, methods applied, collector) and the identification (e.g. species name, author, taxon ID) of the species is provided. Given the current biodiversity crisis, the publication of checklists, sampling-event data and datasets on insect communities in open-access repositories is highly recommended, as it represents the opportunity to share biodiversity information amongst different stakeholders. Moreover, such data are also a valuable source of information for nature reserve managers responsible for monitoring the conservation status of protected and endangered species and habitats and for evaluating the effects of conservation actions over time.

13.
PLoS One ; 18(9): e0285855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37725599

RESUMO

Phylogenetic relationships within the oestroid subclades Rhinophorinae (Calliphoridae) and Polleniidae were reconstructed for the first time, applying a Sanger sequencing approach using the two protein-coding nuclear markers CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase; 1794 bp) and MCS (molybdenum cofactor sulfurase; 2078 bp). Three genera of Polleniidae and nineteen genera of Rhinophorinae were analyzed together with a selection of taxa representing the major lineages of Oestroidea (non-rhinophorine Calliphoridae, Oestridae, Sarcophagidae, Tachinidae). The selected markers provide good resolution and moderate to strong support of the distal branches, but weak support for several deeper nodes. Polleniidae (cluster flies) emerge as monophyletic and their sister-group relationship to Tachinidae is confirmed. Morinia Robineau-Desvoidy as currently circumscribed emerges as paraphyletic with regard to Melanodexia Williston, and Pollenia Robineau-Desvoidy is the sister taxon of the Morinia-Melanodexia clade. We propose a classification with two subfamilies, Moriniinae Townsend (including Morinia, Melanodexia, and Alvamaja Rognes), and Polleniinae Brauer & Bergenstamm (including Pollenia, Dexopollenia Townsend, and Xanthotryxus Aldrich). Anthracomyza Malloch and Nesodexia Villeneuve are considered as Oestroidea incertae sedis pending further study. Rhinophorinae (woodlouse flies) emerge as monophyletic and sister to a clade composed of (Ameniinae + (Ameniinae + Phumosiinae)), and a tribal classification is proposed with the subfamily divided into Rhinophorini Robineau-Desvoidy, 1863 and Phytonini Robineau-Desvoidy, 1863 (the Stevenia-group and the Phyto-group of authors, respectively). Oxytachina Brauer & Bergenstamm, 1891, stat. rev. is resurrected to contain nine Afrotropical rhinophorine species currently assigned to genus Rhinomorinia Brauer & Bergenstamm, 1891: Oxytachina approximata (Crosskey, 1977) comb. nov., O. atra (Bischof, 1904) comb. nov., O. bisetosa (Crosskey, 1977) comb. nov., O. capensis (Brauer & Bergenstamm, 1893) comb. nov., O. scutellata (Crosskey, 1977) comb. nov., O. setitibia (Crosskey, 1977) comb. nov., O. verticalis (Crosskey, 1977) comb. nov., O. vittata Brauer & Bergenstamm, 1891, and O. xanthocephala (Bezzi, 1908) comb. nov.


Assuntos
Aspartato Carbamoiltransferase , Brassicaceae , Dípteros , Xylariales , Animais , Dípteros/genética , Calliphoridae , Filogenia
14.
Mol Ecol Resour ; 22(4): 1626-1638, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34863029

RESUMO

Invertebrate biodiversity remains poorly understood although it comprises much of the terrestrial animal biomass, most species and supplies many ecosystem services. The main obstacle is specimen-rich samples obtained with quantitative sampling techniques (e.g., Malaise trapping). Traditional sorting requires manual handling, while molecular techniques based on metabarcoding lose the association between individual specimens and sequences and thus struggle with obtaining precise abundance information. Here we present a sorting robot that prepares specimens from bulk samples for barcoding. It detects, images and measures individual specimens from a sample and then moves them into the wells of a 96-well microplate. We show that the images can be used to train convolutional neural networks (CNNs) that are capable of assigning the specimens to 14 insect taxa (usually families) that are particularly common in Malaise trap samples. The average assignment precision for all taxa is 91.4% (75%-100%). This ability of the robot to identify common taxa then allows for taxon-specific subsampling, because the robot can be instructed to only pick a prespecified number of specimens for abundant taxa. To obtain biomass information, the images are also used to measure specimen length and estimate body volume. We outline how the DiversityScanner can be a key component for tackling and monitoring invertebrate diversity by combining molecular and morphological tools: the images generated by the robot become training images for machine learning once they are labelled with taxonomic information from DNA barcodes. We suggest that a combination of automation, machine learning and DNA barcoding has the potential to tackle invertebrate diversity at an unprecedented scale.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Ecossistema , Humanos , Invertebrados/genética , Aprendizado de Máquina
15.
BMC Zool ; 7(1): 37, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37170177

RESUMO

BACKGROUND: Dipteran parasitoids of Embioptera (webspinners) are few and extremely rare but known from all biogeographical regions except Australasia/Oceania. All belong to the fly family Tachinidae, a hyperdiverse and widespread clade of parasitoids attacking a variety of arthropod orders. RESULTS: The webspinner-parasitizing Diptera are reviewed based mostly on records from the collecting and rearing by Edward S. Ross. A new genus is erected to accommodate a new Afrotropical species, Embiophoneus rossi gen. et sp. nov. The genus Perumyia Arnaud is reviewed and a new species, Perumyia arnaudi sp. nov., is described from Central America while P. embiaphaga Arnaud is redescribed and new host records are given. A new species of Phytomyptera Rondani, P. woodi sp. nov., is described from Myanmar, representing the first report of a member of this genus obtained from webspinners. The genus Rossimyiops Mesnil is reviewed, R. longicornis (Kugler) is redescribed and R. aeratus sp. nov., R. fuscus sp. nov. and R. rutilans sp. nov. are newly described from the Oriental Region, and an updated key to species is given. CONCLUSIONS: Webspinners were probably colonized independently at least four times by tachinids shifting from other hosts, most likely Lepidoptera.

16.
Zookeys ; 1094: 1-466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836978

RESUMO

The faunistic knowledge of the Diptera of Morocco recorded from 1787 to 2021 is summarized and updated in this first catalogue of Moroccan Diptera species. A total of 3057 species, classified into 948 genera and 93 families (21 Nematocera and 72 Brachycera), are listed. Taxa (superfamily, family, genus and species) have been updated according to current interpretations, based on reviews in the literature, the expertise of authors and contributors, and recently conducted fieldwork. Data to compile this catalogue were primarily gathered from the literature. In total, 1225 references were consulted and some information was also obtained from online databases. Each family was reviewed and the checklist updated by the respective taxon expert(s), including the number of species that can be expected for that family in Morocco. For each valid species, synonyms known to have been used for published records from Morocco are listed under the currently accepted name. Where available, distribution within Morocco is also included. One new combination is proposed: Assuaniamelanoleuca (Séguy, 1941), comb. nov. (Chloropidae).

17.
Biodivers Data J ; 9: e69351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552375

RESUMO

BACKGROUND: Prior to this study, 141 species of Tephritidae were known to occur in Italy. NEW INFORMATION: Italian records of nine species of the family Tephritidae (Diptera) are provided. Five species, Eurasimonastigma (Loew, 1840), Noeetabisetosa Merz, 1992, Campiglossadoronici (Loew, 1856), Xyphosialaticauda (Meigen, 1826) and Rhagoletisberberidis Jermy, 1961 are recorded from Italy for the first time, whereas four species, Inuromaesamaura (Frauenfeld, 1857), Urophoracuspidata (Meigen, 1826), Tephritisconyzifoliae Merz, 1992 and T.mutabilis Merz, 1992, previously recorded in the Fauna Europaea database without reference to collection material, are confirmed and supplemented with host plant data and other collection data.

18.
Insects ; 12(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923404

RESUMO

Lebambromyia sacculifera sp. nov. is described from Late Cretaceous amber from Myanmar, integrating traditional observation techniques and X-ray phase contrast microtomography. Lebambromyia sacculifera is the second species of Lebambromyia after L. acrai Grimaldi and Cumming, described from Lebanese amber (Early Cretaceous), and the first record of this taxon from Myanmar amber, considerably extending the temporal and geographic range of this genus. The new specimen bears a previously undetected set of phylogenetically relevant characters such as a postpedicel sacculus and a prominent clypeus, which are shared with Ironomyiidae and Eumuscomorpha. Our cladistic analyses confirmed that Lebambromyia represented a distinct monophyletic lineage related to Platypezidae and Ironomyiidae, though its affinities are strongly influenced by the interpretation and coding of the enigmatic set of features characterizing these fossil flies.

19.
Ecology ; 102(2): e03243, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33190225

RESUMO

Plants acting as ecosystem engineers create habitats and facilitate biodiversity maintenance within plant communities. Furthermore, biodiversity research has demonstrated that plant diversity enhances the productivity and functioning of ecosystems. However, these two fields of research developed in parallel and independent from one another, with the consequence that little is known about the role of ecosystem engineers in the relationship between biodiversity and ecosystem functioning across trophic levels. Here, we present an experimental framework to study this relationship. We combine facilitation by plants acting as ecosystem engineers with plant-insect interaction analysis and variance partitioning of biodiversity effects. We present a case-study experiment in which facilitation by a cushion-plant species and a dwarf-shrub species as ecosystem engineers increases positive effects of plant functional diversity (ecosystem engineers and associated plants) on ecosystem functioning (flower visitation rate). The experiment, conducted in the field during a single alpine flowering season, included the following treatments: (1) removal of plant species associated with ecosystem engineers, (2) exclusion (covering) of ecosystem engineer flowers, and (3) control, i.e., natural patches of ecosystem engineers and associated plant species. We found both positive and negative associational effects between plants depending on ecosystem engineer identity, indicating both pollination facilitation and interference. In both cases, patches supported by ecosystem engineers increased phylogenetic and functional diversity of flower visitors. Furthermore, complementarity effects between engineers and associated plants were positive for flower visitation rates. Our study reveals that plant facilitation can enhance the strength of biodiversity-ecosystem functioning relationships, with complementarity between plants for attracting more and diverse flower visitors being the likely driver. A potential mechanism is that synergy and complementarity between engineers and associated plants increase attractiveness for shared visitors and widen pollination niches. In synthesis, facilitation among plants can scale up to a full network, supporting ecosystem functioning both directly via microhabitat amelioration and indirectly via diversity effects.


Assuntos
Biodiversidade , Ecossistema , Animais , Filogenia , Plantas , Polinização
20.
Insects ; 11(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198258

RESUMO

Three new species of Rhinophoridae (Aporeomyia elaphocerasp. nov., Baniassa pennatasp. nov. from the Oriental Region, and Phyto mambillasp. nov. from the Afrotropical Region) are described, illustrated and compared with congeners. Genus-level affiliation of the new species is based on a morphology-based phylogeny, preliminarily accepting a paraphyletic Phyto Robineau-Desvoidy awaiting incorporation of molecular data. Keys to the species of the genus Aporeomyia Pape & Shima as well as to the Afrotropical species of the genus Phyto Robineau-Desvoidy are given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA