RESUMO
The aim of this work was to investigate how ZnO tetrapod (ZnO-T) morphology, structure, and surface charge properties (i.e. Debye length) influence their UV sensing properties, shedding light on the underlying photoresponse mechanisms. ZnO-Ts were synthesized and centrifuged to obtain three different fractions with tuned morphology, which were characterized by scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy microscopies, x-ray diffraction analysis, Brunauer-Emmett-Teller measurements, FTIR and UV-vis spectroscopies. ZnO-T UV sensors were fabricated and tested comparing among ZnO-T fractions and commercial ZnO nanoparticles. ZnO-T photoresponse was mostly influenced by ZnO-T leg diameter, with the optimal value close to the double Debye length. We also demonstrated how fractionating ZnO-Ts for morphology optimization can increased the responsivity by 2 orders of magnitude. Moreover, ZnO-T showed 3 orders of magnitude higher responsivity compared to commercial ZnO nanopowder. These results are beneficial for the engineering of efficient UV sensors and contribute to a deeper understanding the overall mechanism governing UV photoresponse.
RESUMO
Nanomaterials are commonly defined as particles existing in nature or artificially manufactured materials that have one or more external dimensions in the 1-100 nm range [...].
RESUMO
We studied the effect of Amyloid ß 1-42 oligomers (Abeta42) on Ca2+ dependent excitability profile of hippocampal neurons. Abeta42 is one of the Amyloid beta peptides produced by the proteolytic processing of the amyloid precursor protein and participates in the initiating event triggering the progressive dismantling of synapses and neuronal circuits. Our experiments on cultured hippocampal network reveal that Abeta42 increases intracellular Ca2+ concentration by 46% and inhibits firing discharge by 19%. More precisely, Abeta42 differently regulates ryanodine (RyRs), NMDA receptors (NMDARs), and voltage gated calcium channels (VGCCs) by increasing Ca2+ release through RyRs and inhibiting Ca2+ influx through NMDARs and VGCCs. The overall increased intracellular Ca2+ concentration causes stimulation of K+ current carried by big conductance Ca2+ activated potassium (BK) channels and hippocampal network firing inhibition. We conclude that Abeta42 alters neuronal function by means of at least 4 main targets: RyRs, NMDARs, VGCCs, and BK channels. The development of selective modulators of these channels may in turn be useful for developing effective therapies that could enhance the quality of life of AD patients during the early onset of the pathology.
Assuntos
Potenciais de Ação/fisiologia , Peptídeos beta-Amiloides/farmacologia , Hipocampo/fisiologia , Neurônios/fisiologia , Fragmentos de Peptídeos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Hipocampo/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Fatores de TempoRESUMO
Short polyserine (polyS) repeats are frequently found in proteins and longer ones are produced in neurological disorders such as Huntington disease (HD) owing to translational frameshifting or non-ATG-dependent translation, together with polyglutamine (polyQ) and polyalanine (polyA) repeats, forming intracellular aggregates. However, the physiological and pathological structures of polyS repeats are not clearly understood. Early studies highlighted their structural versatility, similar to other homopolymers whose conformation is influenced by the surrounding protein context. As polyS stretches are frequently near polyQ and polyA repeats, which can be part of coiled coil (CC) structures, and the frameshift-derived polyS repeats in HD directly flank CC heptads important for aggregation, we investigate here the structural and aggregation properties of polyS in the context of CC structures. We have taken advantage of peptide models, previously used to study polyQ and polyA in CCs, in which we inserted polyS repeats of variable length and studied them in comparison with polyQ and polyA peptides. We found that polyS repeats promote CC-mediated polymerization and fibrillization as revealed by circular dichroism, chemical crosslinking, and atomic force microscopy. Furthermore, they promote CC-based, length-dependent intracellular aggregation, which is negligible with 7 and widespread with 49 serines. These findings show that polyS repeats can participate in the formation of CCs, as previously found for polyQ and polyA, conferring to peptides distinctive structural properties with aggregation kinetics that are intermediate between those of polyA and polyQ CCs, and contribute to an overall structural definition of the pathophysiogical roles of homopolymeric repeats in CC structures.
Assuntos
Peptídeos/química , Agregados Proteicos , Conformação Proteica , Dicroísmo Circular , Humanos , Cinética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Peptídeos/genética , Agregação Patológica de ProteínasRESUMO
Carbon nanotubes (CNTs) are considered promising for a large range of emerging technologies ranging from advanced electronics to utilization as nanoreactors. Here we report a controlled facile synthesis of aligned carbon nanotubes with very small dimensions directly grown on steel grid substrates via two-step catalytic chemical vapor deposition (CCVD) of a molecular catalyst (ferrocene) with ethylene as the carbon source. The system is characterized by resonance Raman spectroscopy and the results show single walled carbon nanotube (SWCNT) arrays composed of 0.80 nm to 1.24 nm semiconducting CNTs, as analyzed using Kataura analysis, which is approaching the lowest diameters attainable for SWCNTs. The G+ and G- mode splitting, G- line shapes and ring breathing modes (RBMs) are analyzed to characterize the CNTs. The approach results in close packed and vertically aligned SWCNT bundles formed into hair shapes, with some contribution from multiwall CNTs (MWCNTs). IR spectroscopy is utilized to characterize the edge/defect states that have the ability to form esters and ether bonds in the as-prepared CNTs. The stepwise deposition of the catalyst followed by the carbon source gives control over the formation of small diameter single walled carbon nanotubes (SWCNTs). The utilization of molecular catalysts for narrow diameter growth directly on steel grid substrates forms a promising approach for producing cost-effective CNT substrates for a plethora of sensing and catalytic applications.
RESUMO
The expansion of homopolymeric glutamine (polyQ) or alanine (polyA) repeats in certain proteins owing to genetic mutations induces protein aggregation and toxicity, causing at least 18 human diseases. PolyQ and polyA repeats can also associate in the same proteins, but the general extent of their association in proteomes is unknown. Furthermore, the structural mechanisms by which their expansion causes disease are not well understood, and these repeats are generally thought to misfold upon expansion into aggregation-prone ß-sheet structures like amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) structures in triggering aggregation and toxicity of polyQ-expanded proteins, raising the possibility that polyA repeats may as well form these structures, by themselves or in association with polyQ. We found through bioinformatics screenings that polyA, polyQ and polyQA repeats have a phylogenetically graded association in human and non-human proteomes and associate/overlap with CC domains. Circular dichroism and cross-linking experiments revealed that polyA repeats can form--alone or with polyQ and polyQA--CC structures that increase in stability with polyA length, forming higher-order multimers and polymers in vitro. Using structure-guided mutagenesis, we studied the relevance of polyA CCs to the in vivo aggregation and toxicity of RUNX2--a polyQ/polyA protein associated with cleidocranial dysplasia upon polyA expansion--and found that the stability of its polyQ/polyA CC controls its aggregation, localization and toxicity. These findings indicate that, like polyQ, polyA repeats form CC structures that can trigger protein aggregation and toxicity upon expansion in human genetic diseases.
Assuntos
Peptídeos/química , Proteínas/química , Proteínas/metabolismo , Linhagem Celular , Dicroísmo Circular , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Microscopia Confocal , FilogeniaRESUMO
BACKGROUND: Multi-walled carbon nanotubes (MWCNT) are currently under intense toxicological investigation due to concern on their potential health effects. Current in vitro and in vivo data indicate that MWCNT exposure is strongly associated with lung toxicity (inflammation, fibrosis, granuloma, cancer and airway injury) and their effects might be comparable to asbestos-induced carcinogenesis. Although fibrosis is a multi-origin disease, epithelial-mesenchymal transition (EMT) is recently recognized as an important pathway in cell transformation. It is known that MWCNT exposure induces EMT through the activation of the TGF-ß/Smad signalling pathway thus promoting pulmonary fibrosis, but the molecular mechanisms involved are not fully understood. In the present work we propose a new mechanism involving a TGF-ß-mediated signalling pathway. METHODS: Human bronchial epithelial cells were incubated with two different MWCNT samples at various concentrations for up to 96 h and several markers of EMT were investigated. Quantitative real time PCR, western blot, immunofluorescent staining and gelatin zymographies were performed to detect the marker protein alterations. ELISA was performed to evaluate TGF-ß production. Experiments with neutralizing anti-TGF-ß antibody, specific inhibitors of GSK-3ß and Akt and siRNA were carried out in order to confirm their involvement in MWCNT-induced EMT. In vivo experiments of pharyngeal aspiration in C57BL/6 mice were also performed. Data were analyzed by a one-way ANOVA with Tukey's post-hoc test. RESULTS: Fully characterized MWCNT (mean length < 5 µm) are able to induce EMT in an in vitro human model (BEAS-2B cells) after long-term incubation at sub-cytotoxic concentrations. MWCNT stimulate TGF-ß secretion, Akt activation and GSK-3ß inhibition, which induces nuclear accumulation of SNAIL-1 and its transcriptional activity, thus contributing to switch on the EMT program. Moreover, a significant increment of nuclear ß-catenin - due to E-cadherin repression and following translocation to nucleus - likely reinforces signalling for EMT promotion. In vivo results supported the occurrence of pulmonary fibrosis following MWCNT exposure. CONCLUSIONS: We demonstrate a new molecular mechanism of MWCNT-mediated EMT, which is Smad-independent and involves TGF-ß and its intracellular effectors Akt/GSK-3ß that activate the SNAIL-1 signalling pathway. This finding suggests potential novel targets in the development of therapeutic and preventive approaches.
Assuntos
Brônquios/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/agonistas , Animais , Brônquios/metabolismo , Brônquios/patologia , Brônquios/ultraestrutura , Testes de Carcinogenicidade , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Exposição por Inalação/efeitos adversos , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Mucosa Respiratória/ultraestrutura , Fatores de Transcrição da Família Snail/metabolismo , Propriedades de Superfície , Fator de Crescimento Transformador beta/metabolismoRESUMO
MoS2/TNTs composites have been obtained by impregnation of titanate nanotubes (TNTs) with a centrifuged solution of nanosized MoS2 particles in isopropyl alcohol (IPA). The characterization has been performed by combining UV-vis-NIR, Raman, AFM, and HRTEM analyses, before and after impregnation. HRTEM images show that the contact between single-layer MoS2 nanoparticles and the support is efficient, so justifying the decoration concept. The volatility of IPA solvent allows the preparation of composites at low temperature and free of carbonaceous impurities. MoS2 nanoparticles have strong excitonic transitions, which are only slightly shifted with respect to the bulk because of quantum size effects. Concentrations of MoS2, less than 0.1 wt %, are enough to induce strong absorption in the visible. Photodegradation of methylene blue (MB) has been performed on TNTs and MoS2/TNTs to verify the effect of the presence of MoS2. The first layer of adsorbed MB is consumed first, followed by clustered MB in the second and more external layers. The presence of low concentrated MoS2 nanoparticles does not substantially alter the photocatalytic properties of TNTs. This result is due to poor overlapping between the high frequency of MoS2 C, D excitonic transitions and the TNTs band gap transition.
RESUMO
The Special Issue covers low-dimensional structures or systems with reduced spatial dimensions, resulting in unique properties. The classification of these materials according to their dimensionality (0D, 1D, 2D, etc.) emerged from nanoscience and nanotechnology. One review and eighteen research articles highlight recent developments and perspectives in the field of low-dimensional structures and demonstrate the potential of low-dimensional systems in various fields, from nanomaterials for energy applications to biomedical sensors and biotechnology sector.
RESUMO
Graphitic carbon nitride (g-C3N4) has emerged as one of the most promising solar-light-activated polymeric metal-free semiconductor photocatalysts due to its thermal physicochemical stability but also its characteristics of environmentally friendly and sustainable material. Despite the challenging properties of g-C3N4, its photocatalytic performance is still limited by the low surface area, together with the fast charge recombination phenomena. Hence, many efforts have been focused on overcoming these drawbacks by controlling and improving the synthesis methods. With regard to this, many structures including strands of linearly condensed melamine monomers, which are interconnected by hydrogen bonds, or highly condensed systems, have been proposed. Nevertheless, complete and consistent knowledge of the pristine material has not yet been achieved. Thus, to shed light on the nature of polymerised carbon nitride structures, which are obtained from the well-known direct heating of melamine under mild conditions, we combined the results obtained from XRD analysis, SEM and AFM microscopies, and UV-visible and FTIR spectroscopies with the data from the Density Functional Theory method (DFT). An indirect band gap and the vibrational peaks have been calculated without uncertainty, thus highlighting a mixture of highly condensed g-C3N4 domains embedded in a less condensed "melon-like" framework.
RESUMO
It is highly advantageous to devise an in vitro platform that can predict the complexity of an in vivo system. The first step of this process is the identification of a xenobiotic whose monooxygenation is carried out by two sequential enzymatic reactions. Pesticides are a good model for this type of tandem reactions since in specific cases they are initially metabolised by human flavin-containing monooxygenase 1 (hFMO1), followed by cytochrome P450 (CYP). To assess the feasibility of such an in vitro platform, hFMO1 is immobilised on glassy carbon electrodes modified with graphene oxide (GO) and cationic surfactant didecyldimethylammonium bromide (DDAB). UV-vis, contact angle and AFM measurements support the effective decoration of the GO sheets by DDAB which appear as 3 nm thick structures. hFMO1 activity on the bioelectrode versus three pesticides; fenthion, methiocarb and phorate, lead to the expected sulfoxide products with KM values of 29.5 ± 5.1, 38.4 ± 7.5, 29.6 ± 4.1 µM, respectively. Moreover, phorate is subsequently tested in a tandem system with hFMO1 and CYP3A4 resulting in both phorate sulfoxide as well as phoratoxon sulfoxide. The data demonstrate the feasibility of using bioelectrochemical platforms to mimic the complex metabolic reactions of xenobiotics within the human body.
Assuntos
Praguicidas , Forato , Humanos , Forato/metabolismo , Citocromo P-450 CYP3A , Sulfóxidos/metabolismoRESUMO
The aim of this work was to monitor the effects of extracellular α-synuclein on the firing activity of midbrain neurons dissociated from substantia nigra TH-GFP mice embryos and cultured on microelectrode arrays (MEA). We monitored the spontaneous firing discharge of the network for 21 days after plating and the role of glutamatergic and GABAergic inputs in regulating burst generation and network synchronism. Addition of GABA A , AMPA and NMDA antagonists did not suppress the spontaneous activity but allowed to identify three types of neurons that exhibited different modalities of firing and response to applied L-DOPA: high-rate (HR) neurons, low-rate pacemaking (LR-p), and low-rate non-pacemaking (LR-np) neurons. Most HR neurons were insensitive to L-DOPA, while the majority of LR-p neurons responded with a decrease of the firing discharge; less defined was the response of LR-np neurons. The effect of exogenous α-synuclein (α-syn) on the firing discharge of midbrain neurons was then studied by varying the exposure time (0-48 h) and the α-syn concentration (0.3-70 µM), while the formation of α-syn oligomers was monitored by means of AFM. Independently of the applied concentration, acute exposure to α-syn monomers did not exert any effect on the spontaneous firing rate of HR, LR-p, and LR-np neurons. On the contrary, after 48 h exposure, the firing activity was drastically altered at late developmental stages (14 days in vitro, DIV, neurons): α-syn oligomers progressively reduced the spontaneous firing discharge (IC50 = 1.03 µM), impaired burst generation and network synchronism, proportionally to the increased oligomer/monomer ratio. Different effects were found on early-stage developed neurons (9 DIV), whose firing discharge remained unaltered, regardless of the applied α-syn concentration and the exposure time. Our findings unravel, for the first time, the variable effects of exogenous α-syn at different stages of midbrain network development and provide new evidence for the early detection of neuronal function impairment associated to aggregated forms of α-syn.
RESUMO
[This corrects the article DOI: 10.3389/fncel.2023.1078550.].
RESUMO
The transcription factor FOXP2, a regulator of vocalization- and speech/language-related phenotypes, contains two long polyQ repeats (Q1 and Q2) displaying marked, still enigmatic length variation across mammals. We found that the Q1/Q2 length ratio quantitatively encodes vocalization frequency ranges, from the infrasonic to the ultrasonic, displaying striking convergent evolution patterns. Thus, species emitting ultrasonic vocalizations converge with bats in having a low ratio, whereas species vocalizing in the low-frequency/infrasonic range converge with elephants and whales, which have higher ratios. Similar, taxon-specific patterns were observed for the FOXP2-related protein FOXP1. At the molecular level, we observed that the FOXP2 polyQ tracts form coiled coils, assembling into condensates and fibrils, and drive liquid-liquid phase separation (LLPS). By integrating evolutionary and molecular analyses, we found that polyQ length variation related to vocalization frequency impacts FOXP2 structure, LLPS, and transcriptional activity, thus defining a novel form of polyQ length-based molecular encoding of vocalization frequency.
RESUMO
Two samples of highly pure multiwalled carbon nanotubes (MWCNTs) similar in hydrophobicity and surface reactivity were prepared with similar length, <5 µm, but markedly different diameter (9.4 vs 70 nm). The samples were compared for their cytotoxic activity, uptake, and ability to induce oxidative stress (ROS production and intracellular GSH depletion) in vitro in murine alveolar macrophages (MH-S). The in vivo toxicity was evaluated by measuring biochemical (LDH activity and total proteins) and cellular responses in bronchoalveolar lavage (BAL) after intratracheal instillation in rats. Both samples were internalized in MH-S cells. However, thin MWCNTs appeared significantly more toxic than the thicker ones, both in vitro and in vivo, when compared on a mass-dose basis. The data reported herein suggest that the nanotube diameter is an important parameter to be considered in the toxicological assessment of CNTs.
Assuntos
Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Animais , Transporte Biológico , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Feminino , Glutationa/metabolismo , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral Raman , Propriedades de SuperfícieRESUMO
In the last few decades, global energy requirements have grown exponentially, and increased demand is expected in the upcoming decades [...].
RESUMO
Nanocomposite materials have recently attracted great attention for their wide range of applications, such as in smart materials, flexible electronics, and deformation sensing applications. Such materials make it possible to combine a polymer with functional fillers. In this study, flexible artificial leathers, exhibiting insulating properties and containing 1.5 or 2wt.% of graphene oxide (GO) in the polyurethane (PU) layer, were electrically activated via CO2 laser irradiation to obtain conductive paths at the surface exposed to the laser beam. As the material retained its insulating properties out of the irradiation areas, the laser scribing method allowed, at least in principle, a printed circuit to be easily and quickly fabricated. Combining a variety of investigation methods, including scanning electron microscopy (SEM), optical profilometry, IR and Raman spectroscopies, and direct current (DC) and alternate current (AC) electrical measurements, the effects of the laser irradiation were investigated, and the so-obtained electrical properties of laser-activated GO/PU regions were elucidated to unveil their potential use in both static and dynamic mechanical conditions. In more detail, it was shown that under appropriate CO2 laser irradiation, GO sheets into the GO/PU layer were locally photoreduced to form reduced-GO (RGO) sheets. It was verified that the RGO sheets were entangled, forming an accumulation path on the surface directly exposed to the laser beam. As the laser process was performed along regular paths, these RGO sheets formed electrically conductive wires, which exhibited piezoresistive properties when exposed to mechanical deformations. It was also verified that such piezoresistive paths showed good reproducibility when subjected to small flexural stresses during cyclic testing conditions. In brief, laser-activated GO/PU artificial leathers may represent a new generation of metal-free materials for electrical transport applications of low-current signals and embedded deformation sensors.
RESUMO
Cyclodextrin nanosponges (CD-NS) are cross-linked cyclodextrin polymers characterized by a nanostructured three-dimensional network. CD-NSs in the last years found many different applications in the pharmaceutical field for the controlled release of drugs and for the absorption of undesired substances from physiological media, food, and wastewater. Most of CD-NS syntheses involve the solubilization of the chosen CD in closed batch, using a suitable organic polar aprotic liquid, which may affect potential environmental or biomedical applications. Since the research is now moving towards more sustainable approaches, new and greener syntheses of CD-NS are now being developed. Here, it is reported a new eco-friendly and efficient synthesis of nanosponges through mechanochemistry. Mechanochemistry involves the application of mechanical forces to drive and control chemical reactions by transferring energy to chemical bonds. The mechanochemical approach involves the use of a twin-screw extruder (TSE) as a chemical reactor: TSE are capable of fine temperature control and, furthermore, TS Extrusion is a continuous process and not a batch process. Among the many available CD-NS syntheses, we tested our solvent-free approach on a ß-CD/citric acid (CA) system. Moreover, using TSE, the same polymer was obtained in a considerably shorter time. The so obtained NSs were used for the adsorption and removal of probe molecules, in comparison with NSs prepared by cross-linking ß-CD with CA in batch.
Assuntos
Ciclodextrinas , Nanoestruturas , beta-Ciclodextrinas , Adsorção , Polímeros , Águas ResiduáriasRESUMO
The field of two-dimensional (2D) layered nanomaterials, their hybrid structures, and composite materials has been suddenly increasing since 2004, when graphene-almost certainly the most known 2D material-was successfully obtained from graphite via mechanical exfoliation [...].
RESUMO
Functional materials are promising candidates for application in structural health monitoring/self-healing composites, wearable systems (smart textiles), robotics, and next-generation electronics. Any improvement in these topics would be of great relevance to industry, environment, and global needs for energy sustainability. Taking into consideration all these aspects, low-cost fabrication of electrical functionalities on the outer surface of carbon-nanotube/polypropylene composites is presented in this paper. Electrical-responsive regions and conductive tracks, made of an accumulation layer of carbon nanotubes without the use of metals, have been obtained by the laser irradiation process, leading to confined polymer melting/vaporization with consequent local increase of the nanotube concentration over the electrical percolation threshold. Interestingly, by combining different investigation methods, including thermogravimetric analyses (TGA), X-ray diffraction (XRD) measurements, scanning electron and atomic force microscopies (SEM, AFM), and Raman spectroscopy, the electrical properties of multi-walled carbon nanotube/polypropylene (MWCNT/PP) composites have been elucidated to unfold their potentials under static and dynamic conditions. More interestingly, prototypes made of simple components and electronic circuits (resistor, touch-sensitive devices), where conventional components have been substituted by the carbon nanotube networks, are shown. The results contribute to enabling the direct integration of carbon conductive paths in conventional electronics and next-generation platforms for low-power electronics, sensors, and devices.