RESUMO
In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two wavelengths, each of them carrying two channels with zero and nonzero OAMs, form four independent information channels. In case of spacing between wavelength channels of 0.8 nm and intensity modulation, power penalties relative to the transmission of one channel do not exceed 1.45, 0.79 and 0.46 dB at the hard-decision forward-error correction (HD-FEC) bit-error-rate (BER) limit 3.8 × 10-3 when multiplexing a Gaussian beam and OAM beams of azimuthal orders 1, 2 and 3 respectively. In case of phase modulation, power penalties do not exceed 1.77, 0.54 and 0.79 dB respectively. At the 0.4 nm wavelength grid, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable, cheap, and reliable transformation of OAM states simultaneously with the selection of a particular wavelength in wavelength division multiplexing (WDM). The proposed on-chip device can be useful in future high-capacity optical communications with spatial- and wavelength-division multiplexing, especially for short-range communication links and optical interconnects.
RESUMO
We report an electrically pumped 1550 nm MEMS tunable VCSEL with a continuous tuning of 101 nm at 22 °C. The top MEMS-DBR with built-in stress gradient within the dielectric layers is deposited in a low-temperature PECVD chamber on an InP-based half-VCSEL, structured by surface-micromachining and electrothermally actuated for continuous wavelength tuning. With 2.6 mA threshold current, the laser shows maximum CW output power of 3.2 mW at 1560 nm. The MEMS-VCSEL operates in single-mode with SMSR > 39 dB across the entire tuning range. At 36 °C, the tuning range reaches up to 107 nm. The divergence angle of the MEMS-VCSEL is approximately 5.6° for all tuning wavelengths. The intrinsic linewidth of an unpackaged device is 21 MHz. Quasi-error-free operation at 12.5 Gbps using a directly modulated MEMS-VCSEL is reported for a record 60 nm tuning, showing the potential of the so-called colorless source in WDM applications.
RESUMO
We demonstrate an on-chip device capable of wavelength-selective generation of vortex beams, which is realized by a spiral phase plate integrated onto a microelectromechanical system (MEMS) tunable filter. This vortex MEMS filter, being capable of functioning simultaneously in both wavelength and orbital-angular-momentum (OAM) domains at the 1550 nm wavelength regime, is considered as a compact, robust, and cost-effective solution for simultaneous OAM- and wavelength-division multiplexed optical communications. The experimental OAM spectra for azimuthal orders 1, 2, and 3 show an OAM state purity >92% across a wavelength range of more than 30 nm.
RESUMO
We report frequency-tunable terahertz (THz) generation with a photomixer driven by an ultra-broadband tunable micro-electro-mechanical system vertical-cavity surface-emitting laser (MEMS-VCSEL) and a fixed-wavelength VCSEL, as well as a tunable MEMS-VCSEL mixed with a distributed feedback (DFB) diode. A total frequency span of 3.4 THz is covered in direct detection mode and 3.23 THz in the homodyne mode. The tuning range is solely limited by the dynamic range of the photomixers and the Schottky diode/photoconductor used in the experiment.
RESUMO
Plasmonic nanoantennas are efficient devices to concentrate light in spatial regions much smaller than the wavelength. Only recently, their ability to manipulate photons also on a femtosecond time scale has been harnessed. Nevertheless, designing the dynamical properties of optical antennas has been difficult since the relevant microscopic processes governing their ultrafast response have remained unclear. Here, we exploit frequency-resolved optical gating to directly investigate plasmon response times of different antenna geometries resonant in the near-infrared. Third-harmonic imaging is used in parallel to spatially monitor the plasmonic mode patterns. We find that the few-femtosecond dynamics of these nanodevices is dominated by radiative damping. A high efficiency for nonlinear frequency conversion is directly linked to long plasmon damping times. This single parameter explains the counterintuitive result that rod-type nanoantennas with minimum volume generate by far the strongest third-harmonic emission as compared to the more bulky geometries of bow-tie-, elliptical-, or disk-shaped specimens.