Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 62(7): 1321-1329, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36883372

RESUMO

The Myb transcription factor is involved in the proliferation of hematopoietic cells, and deregulation of its expression can lead to cancers such as leukemia. Myb interacts with various proteins, including the histone acetyltransferases p300 and CBP. Myb binds to a small domain of p300, the KIX domain (p300KIX), and inhibiting this interaction is a potential new drug discovery strategy in oncology. The available structures show that Myb binds to a very shallow pocket of the KIX domain, indicating that it might be challenging to identify inhibitors of this interaction. Here, we report the design of Myb-derived peptides which interact with p300KIX. We show that by mutating only two Myb residues that bind in or near a hotspot at the surface of p300KIX, it is possible to obtain single-digit nanomolar peptidic inhibitors of the Myb/p300KIX interaction that bind 400-fold tighter to p300KIX than wildtype Myb. These findings suggest that it might also be possible to design potent low molecular-weight compounds to disrupt the Myb/p300KIX interaction.


Assuntos
Proteína p300 Associada a E1A , Peptídeos , Proteínas Proto-Oncogênicas c-myb , Peptídeos/farmacologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-myb/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myb/química , Proteína p300 Associada a E1A/antagonistas & inibidores , Proteína p300 Associada a E1A/química
2.
Biochemistry ; 59(19): 1804-1812, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32329346

RESUMO

The Hippo pathway is an evolutionarily conserved signaling pathway that is involved in the control of organ size and development. The TEAD transcription factors are the most downstream elements of the Hippo pathway, and their transcriptional activity is regulated via the interaction with different co-regulators such as YAP. The structure of the YAP:TEAD complex shows that YAP binds to TEAD via two distinct secondary structure elements, an α-helix and an Ω-loop, and site-directed mutagenesis experiments revealed that the Ω-loop is the "hot spot" of this interaction. While much is known about how YAP and TEAD interact with each other, little is known about the mechanism leading to the formation of a complex between these two proteins. Here we combine site-directed mutagenesis with pre-steady-state kinetic measurements to show that the association between these proteins follows an apparent one-step binding mechanism. Furthermore, linear free energy relationships and a Φ analysis suggest that binding-induced folding of the YAP α-helix to TEAD occurs independently of and before formation of the Ω-loop interface. Thus, the binding-induced folding of YAP appears not to conform to the concomitant formation of tertiary structure (nucleation-condensation) usually observed for coupled binding and folding reactions. Our findings demonstrate how a mechanism reminiscent of the classical framework (diffusion-collision) mechanism of protein folding may operate in disorder-to-order transitions involving intrinsically disordered proteins.


Assuntos
Proteínas de Ciclo Celular/química , Complexos Multiproteicos/química , Fatores de Transcrição/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice
3.
Bioorg Med Chem Lett ; 29(16): 2316-2319, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235263

RESUMO

The YAP-TEAD protein-protein interaction is a potential therapeutic target to treat cancers in which the Hippo signaling pathway is deregulated. However, the extremely large surface of interaction between the two proteins presents a formidable challenge for a small molecule interaction disrupter approach. We have accomplished progress towards showing the feasibility of this approach by the identification of a 15-mer peptide able to potently (nanomolar range) disrupt the YAP-TEAD interaction by targeting only one of the two important sites of interaction. This peptide, incorporating non-natural amino acids selected by structure-based design, is derived from the Ω-loop sequence 85-99 of YAP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Desenho de Fármacos , Peptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Fatores de Transcrição/química , Proteínas de Sinalização YAP
4.
Bioorg Med Chem Lett ; 26(19): 4837-4841, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27542305

RESUMO

The p53-MDM2 interaction is an anticancer drug target under investigation in the clinic. Our compound NVP-CGM097 is one of the small molecule inhibitors of this protein-protein interaction currently evaluated in cancer patients. As part of our effort to identify new classes of p53-MDM2 inhibitors that could lead to additional clinical candidates, we report here the design of highly potent inhibitors having a pyrazolopyrrolidinone core structure. The conception of these new inhibitors originated in a consideration on the MDM2 bound conformation of the dihydroisoquinolinone class of inhibitors to which NVP-CGM097 belongs. This work forms the foundation of the discovery of HDM201, a second generation p53-MDM2 inhibitor that recently entered phase I clinical trial.


Assuntos
Descoberta de Drogas , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Conformação Molecular , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(2): 489-94, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267074

RESUMO

Many cancer cells have increased rates of aerobic glycolysis, a phenomenon termed the Warburg effect. In addition, in tumors there is a predominance of expression of the M2 isoform of pyruvate kinase (PKM2). M2 expression was previously shown to be necessary for aerobic glycolysis and to provide a growth advantage to tumors. We report that knockdown of pyruvate kinase in tumor cells leads to a decrease in the levels of pyruvate kinase activity and an increase in the pyruvate kinase substrate phosphoenolpyruvate. However, lactate production from glucose, although reduced, was not fully inhibited. Furthermore, we are unique in reporting increased serine and glycine biosynthesis from both glucose and glutamine following pyruvate kinase knockdown. Although pyruvate kinase knockdown results in modest impairment of proliferation in vitro, in vivo growth of established xenograft tumors is unaffected by PKM2 absence. Our findings indicate that PKM2 is dispensable for tumor maintenance and growth in vivo, suggesting that other metabolic pathways bypass its function.


Assuntos
Glicólise/fisiologia , Neoplasias/fisiopatologia , Piruvato Quinase/metabolismo , Isótopos de Carbono/metabolismo , Linhagem Celular Tumoral , Cromatografia por Troca Iônica , Primers do DNA/genética , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
6.
Bioorg Med Chem Lett ; 25(17): 3621-5, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26141769

RESUMO

Blocking the interaction between the p53 tumor suppressor and its regulatory protein MDM2 is a promising therapeutic concept under current investigation in oncology drug research. We report here the discovery of the first representatives of a new class of small molecule inhibitors of this protein-protein interaction: the dihydroisoquinolinones. Starting from an initial hit identified by virtual screening, a derivatization program has resulted in compound 11, a low nanomolar inhibitor of the p53-MDM2 interaction showing significant cellular activity. Initially based on a binding mode hypothesis, this effort was then guided by a X-ray co-crystal structure of MDM2 in complex with one of the synthesized analogs. The X-ray structure revealed an unprecedented binding mode for p53-MDM2 inhibitors.


Assuntos
Isoquinolinas/química , Isoquinolinas/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cristalografia por Raios X , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/antagonistas & inibidores
7.
Chembiochem ; 15(4): 537-42, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24504694

RESUMO

The Hippo signaling pathway, which controls organ size in animals, is altered in various human cancers. The TEAD transcription factors, the most downstream elements in this pathway, are regulated by different cofactors, such as the Vgll (vestigial-like) proteins. Having studied the interaction between Vgll1-derived peptides and human TEAD4, we show that, although it lacks a key secondary structure element required for tight binding by two other TEAD cofactors (YAP and TAZ), Vgll1-derived peptides bind to TEAD with nanomolar affinity. We identify a ß-strand:loop:α-helix motif as the minimal Vgll binding site. Finally, we reveal an unexpected difference between mouse and human Vgll1-derived peptides.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Musculares/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
ChemMedChem ; : e202400361, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863297

RESUMO

The Hippo pathway, which is key in organ morphogenesis, is frequently deregulated in cancer. The TEAD (TEA domain family member) transcription factors are the most distal elements of this pathway, and their activity is regulated by proteins such as YAP (Yes-associated protein). The identification of inhibitors of the YAP:TEAD interaction is one approach to develop novel anticancer drugs: the first clinical candidate (IAG933) preventing the association between these two proteins by direct competition has just been reported. The discovery of this molecule was particularly challenging because the interface between these two proteins is large (~ 3500 Å2 buried in complex formation) and made up of distinct contact areas. The most critical of these involves an omega-loop (Ω-loop), a secondary structure element rarely found in protein-protein interactions. This review summarizes how the knowledge gained from structure-function studies of the interaction between the Ω-loop of YAP and TEAD was used to devise the strategy to identify potent low-molecular weight compounds that show a pronounced anti-tumor effect.

9.
ACS Chem Biol ; 19(5): 1142-1150, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38655884

RESUMO

The ARID1A and ARID1B subunits are mutually exclusive components of the BAF variant of SWI/SNF chromatin remodeling complexes. Loss of function mutations in ARID1A are frequently observed in various cancers, resulting in a dependency on the paralog ARID1B for cancer cell proliferation. However, ARID1B has never been targeted directly, and the high degree of sequence similarity to ARID1A poses a challenge for the development of selective binders. In this study, we used mRNA display to identify peptidic ligands that bind with nanomolar affinities to ARID1B and showed high selectivity over ARID1A. Using orthogonal biochemical, biophysical, and chemical biology tools, we demonstrate that the peptides engage two different binding pockets, one of which directly involves an ARID1B-exclusive cysteine that could allow covalent targeting by small molecules. Our findings impart the first evidence of the ligandability of ARID1B, provide valuable tools for drug discovery, and suggest opportunities for the development of selective molecules to exploit the synthetic lethal relationship between ARID1A and ARID1B in cancer.


Assuntos
Proteínas de Ligação a DNA , Peptídeos , RNA Mensageiro , Fatores de Transcrição , Humanos , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ligação Proteica , Sítios de Ligação
10.
Nat Cancer ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565920

RESUMO

The YAP-TEAD protein-protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP-TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP-TEAD protein-protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway.

11.
Chembiochem ; 14(10): 1218-25, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23780915

RESUMO

The Hippo pathway controls cell homeostasis, and its deregulation can lead to human diseases. In this pathway, the YAP and TAZ transcriptional cofactors play a key role in stimulating gene transcription through their interaction with the TEAD transcriptional factors. Our study of YAP and TAZ peptides in biochemical and biophysical assays shows that both proteins have essentially the same affinity for TEAD. Molecular modeling and structural biology data suggest that they also bind to the same site on TEAD. However, this apparent similarity hides differences in the ways in which the two proteins interact with TEAD. The secondary structure elements of their TEAD binding site do not contribute equally to the overall affinity, and critical interactions with TEAD are made through different residues. This convergent optimization of the YAP/TAZ TEAD binding site suggests that the similarity in the affinities of binding of YAP to TEAD and of TAZ to TEAD is important for Hippo pathway functionality.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Via de Sinalização Hippo , Humanos , Imuno-Histoquímica , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/química , Fatores de Transcrição/genética
12.
Nat Rev Cancer ; 3(2): 102-9, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12563309

RESUMO

p53 is an attractive therapeutic target in oncology because its tumour-suppressor activity can be stimulated to eradicate tumour cells. Inhibiting the p53-MDM2 interaction is a promising approach for activating p53, because this association is well characterized at the structural and biological levels. MDM2 inhibits p53 transcriptional activity, favours its nuclear export and stimulates its degradation, so inhibiting the p53-MDM2 interaction with synthetic molecules should lead to p53-mediated cell-cycle arrest or apoptosis in p53-positive stressed cells.


Assuntos
Genes p53 , Neoplasias/terapia , Proteínas Nucleares , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-mdm2
13.
ACS Chem Biol ; 18(3): 643-651, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36825662

RESUMO

The TEAD transcription factors are the most distal elements of the Hippo pathway, and their transcriptional activity is regulated by several proteins, including YAP. In some cancers, the Hippo pathway is deregulated and inhibitors of the YAP:TEAD interaction are foreseen as new anticancer drugs. The binding of YAP to TEAD is driven by the interaction of an α-helix and an Ω-loop present in its TEAD-binding domain with two distinct pockets at the TEAD surface. Using the mRNA-based display technique to screen a library of in vitro-translated cyclic peptides, we identified a peptide that binds with a nanomolar affinity to TEAD. The X-ray structure of this peptide in complex with TEAD reveals that it interacts with the α-helix pocket. Under our experimental conditions, this peptide can form a ternary complex with TEAD and YAP. Furthermore, combining it with a peptide binding to the Ω-loop pocket gives an additive inhibitory effect on the YAP:TEAD interaction. Overall, our results show that it is possible to identify nanomolar inhibitors of the YAP:TEAD interaction that bind to the α-helix pocket, suggesting that developing such compounds might be a strategy to treat cancers where the Hippo pathway is deregulated.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Conformação Proteica em alfa-Hélice , Fatores de Transcrição de Domínio TEA , Peptídeos/química
14.
Protein Sci ; 32(1): e4545, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522189

RESUMO

The yes-associated protein (YAP) regulates the transcriptional activity of the TEAD transcription factors that are key in the control of organ morphogenesis. YAP interacts with TEAD via three secondary structure elements: a ß-strand, an α-helix, and an Ω-loop. Earlier results have shown that the ß-strand has only a marginal contribution in the YAP:TEAD interaction, but we show here that it significantly enhances the affinity of YAP for the Drosophila homolog of TEAD, scalloped (Sd). Nuclear magnetic resonance shows that the ß-strand adopts a more rigid conformation once bound to Sd; pre-steady state kinetic measurements show that the YAP:Sd complex is more stable. Although the crystal structures of the YAP:TEAD and YAP:Sd complexes reveal no differences at the binding interface that could explain these results. Molecular Dynamics simulations are in line with our experimental findings regarding ß-strand stability and overall binding affinity of YAP to TEAD and Sd. In particular, RMSF, correlated motion and MMGBSA analyses suggest that ß-sheet fluctuations play a relevant role in YAP53-57 ß-strand dissociation from TEAD4 and contribute to the lower affinity of YAP for TEAD4. Identifying a clear mechanism leading to the difference in YAP's ß-strand stability proved to be challenging, pointing to the potential relevance of multiple modest structural changes or fluctuations for regulation of binding affinity.


Assuntos
Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Fatores de Transcrição/química , Proteínas de Ligação a DNA/química , Conformação Proteica em Folha beta , Regulação da Expressão Gênica , Ligação Proteica
15.
ChemMedChem ; 18(11): e202300051, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988034

RESUMO

The inhibition of the YAP-TEAD protein-protein interaction constitutes a promising therapeutic approach for the treatment of cancers linked to the dysregulation of the Hippo signaling pathway. The identification of a class of small molecules which potently inhibit the YAP-TEAD interaction by binding tightly to the Ω-loop pocket of TEAD has previously been communicated. This report details the further multi-parameter optimization of this class of compounds resulting in advanced analogs combining nanomolar cellular potency with a balanced ADME and off-target profile, and efficacy of these compounds in tumor bearing mice is demonstrated for the first time.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
16.
Bioorg Med Chem Lett ; 22(10): 3498-502, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22507962

RESUMO

Disrupting the interaction between the p53 tumor suppressor and its regulator MDM2 is a promising therapeutic strategy in anticancer drug research. In our search for non peptide inhibitors of this protein-protein interaction, we have devised a ligand design concept exploiting the central position of Val 93 in the p53 binding pocket of MDM2. The design of molecules based on this concept has allowed us to rapidly identify compounds having a 3-imidazolyl indole core structure as the first representatives of a new class of potent inhibitors of the p53-MDM2 interaction.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Valina/metabolismo , Modelos Moleculares , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores
17.
J Enzyme Inhib Med Chem ; 27(2): 194-200, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21635207

RESUMO

The protein kinase field is a very active research area in the pharmaceutical industry and many activities are ongoing to identify inhibitors of these proteins. The design of new chemical entities with improved pharmacological properties requires a deeper understanding of the factors that modulate inhibitor-kinase interactions. In this report, we studied the effect of two of these factors--the magnesium ion cofactor and the protein substrate--on inhibitors of the type I insulin-like growth factor receptor. Our results show that the concentration of magnesium ion influences the potency of adenosine triphosphate (ATP) competitive inhibitors, suggesting an explanation for the observation that such compounds retain their nanomolar potency in cells despite the presence of millimolar levels of ATP. We also showed that the peptidic substrate affects the potency of these inhibitors in a different manner, suggesting that the influence of this substrate on compound potency should be taken into consideration during drug discovery.


Assuntos
Trifosfato de Adenosina/metabolismo , Magnésio/metabolismo , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Receptor IGF Tipo 1/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Conformação Proteica/efeitos dos fármacos , Pirimidinas/farmacologia , Pirróis/farmacologia , Estaurosporina/farmacologia , Especificidade por Substrato
18.
iScience ; 25(4): 104099, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378854

RESUMO

Yes-associated protein (YAP) is a partly intrinsically disordered protein (IDP) that plays a major role as the downstream element of the Hippo pathway. Although the structures of the complex between TEA domain transcription factors (TEADs) and the TEAD-binding domain of YAP are already well characterized, its apo state and the binding mechanism with TEADs are still not clearly defined. Here we characterize via a combination of different NMR approaches with site-directed mutagenesis and affinity measurements the intrinsically disordered solution state of apo YAP. Our results provide evidence that the apo state of YAP adopts several compact conformations that may facilitate the formation of the YAP:TEAD complex. The interplay between local secondary structure element preformation and long-range co-stabilization of these structured elements precedes the encounter complex formation with TEAD and we, therefore, propose that TEAD binding proceeds largely via conformational selection of the preformed compact substates displaying at least nanosecond lifetimes.

19.
Sci Rep ; 12(1): 4984, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322151

RESUMO

The TEAD transcription factors are the most downstream elements of the Hippo pathway. Their transcriptional activity is modulated by different regulator proteins and by the palmitoylation/myristoylation of a specific cysteine residue. In this report, we show that a conserved lysine present in these transcription factors can also be acylated, probably following the intramolecular transfer of the acyl moiety from the cysteine. Using Scalloped (Sd), the Drosophila homolog of human TEAD, as a model, we designed a mutant protein (Glu352GlnSd) that is predominantly acylated on the lysine (Lys350Sd). This protein binds in vitro to the three Sd regulators-Yki, Vg and Tgi-with a similar affinity as the wild type Sd, but it has a significantly higher thermal stability than Sd acylated on the cysteine. This mutant was also introduced in the endogenous locus of the sd gene in Drosophila using CRISPR/Cas9. Homozygous mutants reach adulthood, do not present obvious morphological defects and the mutant protein has both the same level of expression and localization as wild type Sd. This reveals that this mutant protein is both functional and able to control cell growth in a similar fashion as wild type Sd. Therefore, enhancing the lysine acylation of Sd has no detrimental effect on the Hippo pathway. However, we did observe a slight but significant increase of wing size in flies homozygous for the mutant protein suggesting that a higher acylation of the lysine affects the activity of the Hippo pathway. Altogether, our findings indicate that TEAD/Sd can be acylated either on a cysteine or on a lysine, and suggest that these two different forms may have similar properties in cells.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição de Domínio TEA , Animais , Cisteína/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoilação , Lisina/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transativadores/metabolismo
20.
ChemMedChem ; 17(19): e202200303, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35950546

RESUMO

Inhibition of the YAP-TEAD protein-protein interaction is an attractive therapeutic concept under intense investigation with the objective to treat cancers associated with a dysregulation of the Hippo pathway. However, owing to the very extended surface of interaction of the two proteins, the identification of small drug-like molecules able to efficiently prevent YAP from binding to TEAD by direct competition has been elusive so far. We disclose here the discovery of the first class of small molecules potently inhibiting the YAP-TEAD interaction by binding at one of the main interaction sites of YAP at the surface of TEAD. These inhibitors, providing a path forward to pharmacological intervention in the Hippo pathway, evolved from a weakly active virtual screening hit advanced to high potency by structure-based design.


Assuntos
Neoplasias , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal/química , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA