Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31941392

RESUMO

Effects of trehalose lipids produced from Rhodococcus erythropolis ATCC 4277 on phenanthrene (PHE) mineralization by two soil microorganisms were investigated. Biodegradation experiments were conducted, with and without the biosurfactant, in three batch systems: water, soil, and soil-water slurry. PHE sorption to the soil did not limit the mineralization by the test microorganisms, Pseudomonas strain R (PR) and Sphingomonas sp. strain P5-2 (SP5-2). Both microorganisms, however, demonstrated significant difference in the PHE mineralization capability in the systems. While SP5-2 mineralized PHE faster than PR in liquid culture, PR having more hydrophobic surface greatly exceeded SP5-2 in ability to access soil-sorbed PHE. While the addition of the biosurfactant little affected the apparent cell hydrophobicity of SP5-2, it substantially improved PHE mineralization by this strain in all systems tested. Contrary to SP5-2, the apparent cell hydrophobicity was significantly stimulated with increasing concentration of the biosurfactant for PR. However, the biosurfactant had no significant effect on PHE mineralization by this microorganism. The results demonstrated that the addition of the biosurfactant may have great potential for remediation of sites contaminated with polycyclic aromatic hydrocarbons but its effects and benefits may be dependent on characteristics of microorganisms involved and environmental conditions.


Assuntos
Glicolipídeos/metabolismo , Fenantrenos/metabolismo , Pseudomonas/metabolismo , Rhodococcus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Trealose/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Fenantrenos/análise , Solo/química , Poluentes do Solo/análise , Tensoativos/metabolismo
2.
Water Environ Res ; 90(2): 180-186, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28766483

RESUMO

Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.


Assuntos
Biocombustíveis , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Esgotos
3.
Artigo em Inglês | MEDLINE | ID: mdl-25837563

RESUMO

This study investigated the effects of surfactant-producing microorganism, Pseudomonas aeruginosa ATCC 9027, on phenanthrene (PHE) biodegradation by two different PHE-degrading bacteria (Isolate P5-2 and Pseudomonas strain R) in soil. Phenanthrene mineralization experiments were conducted with soils inoculated with one of PHE-degraders and/or the surfactant-producer. Influence of co-inoculation with the surfactant-producing bacteria on phenanthrene transport and biodegradation was also examined in soil columns. P. strain R mineralized phenanthrene faster and to a greater extent than Isolate P5-2 in the test soil. Co-inoculation with the surfactant-producing bacteria significantly enhanced phenanthrene biodegradation by P. strain R but it did not affect the biodegradation by Isolate P5-2 in both batch and column systems. Production of biosurfactants by P. aeruginosa ATCC 9027 was negligible under the given conditions. This study demonstrated that bioaugmentation with surfactant-producing bacteria could enhance in situ bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and the beneficial effect of the bioaugmentation depended on types of PAH-degrading microorganisms present.


Assuntos
Fenantrenos/metabolismo , Pseudomonas aeruginosa/metabolismo , Poluentes do Solo/metabolismo , Tensoativos/metabolismo , Biodegradação Ambiental , Microbiologia do Solo
4.
Artigo em Inglês | MEDLINE | ID: mdl-24410688

RESUMO

Ammonium perchlorate is one of the main constituents in Army's insensitive melt-pour explosive, PAX-21 in addition to RDX and 2,4-dinitroanisole (DNAN). The objective of this study is to develop an innovative treatment process to remove both perchlorate and energetic compounds simultaneously from PAX-21 production wastewater. It was hypothesized that the pretreatment of PAX-21 wastewater with zero-valent iron (ZVI) would convert energetic compounds to products that are more amenable for biological oxidation and that these products serve as electron donors for perchlorate-reducing bacteria. Results of batch ZVI reduction experiments showed that DNAN was completely reduced to 2,4-diaminoanisole and RDX was completely reduced to formaldehyde. Anaerobic batch biodegradation experiments showed that perchlorate (30 mg L(-1)) in ZVI-treated PAX-21 wastewater was decreased to an undetectable level after 5 days. Batch biodegradation experiments also confirmed that formaldehyde in ZVI-treated wastewater was the primary electron donor for perchlorate-respiring bacteria. The integrated iron-anaerobic bioreactor system was effective in completely removing energetic compounds and perchlorate from the PAX-21 wastewater without adding an exogenous electron donor. This study demonstrated that ZVI pretreatment not only removed energetic compounds, but also transformed energetic compounds to products that can serve as the source of electrons for perchlorate-respiring bacteria.


Assuntos
Bactérias/metabolismo , Recuperação e Remediação Ambiental/métodos , Substâncias Explosivas/química , Substâncias Explosivas/metabolismo , Ferro/química , Percloratos/química , Percloratos/metabolismo , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo , Águas Residuárias/química , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Recuperação e Remediação Ambiental/instrumentação , Oxirredução
5.
Artigo em Inglês | MEDLINE | ID: mdl-22217090

RESUMO

1,4-Dioxane is one of the by-products from the polyester manufacturing process, which has been carelessly discharged into water bodies and is a weak human carcinogen. In this study, a laboratory-scale, up-flow biological aerated filter (UBAF), packed with tire chips, was investigated for the treatment of 1,4-dioxane. The UBAF was fed with effluent, containing an average of 31 mg/L of 1,4-dioxane, discharged from an anaerobic treatment unit at H Co. in the Gumi Industrial Complex, South Korea. In the batch, a maximum of 99.5 % 1,4-dioxane was removed from an influent containing 25.6 mg/L. In the continuous mode, the optimal empty bed contact time (EBCT) and air to liquid flow rate (A:L) were 8.5 hours and 30:1, respectively. It was also found that the removal efficiency of 1,4-dioxane increased with increasing loading rate within the range 0.04 to 0.31 kg 1,4-dioxane/m(3)·day. However, as the COD:1,4-dioxane ratio was increased within the range 3 to 46 (mg/L COD)/(mg/L 1,4-dioxane), the removal efficiency unexpectedly decreased.


Assuntos
Bactérias Aeróbias/metabolismo , Reatores Biológicos , Dioxanos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Aerobiose , Bactérias Aeróbias/classificação , Bactérias Aeróbias/genética , Biofilmes/classificação , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Filtração , Resíduos Industriais , Microscopia Eletrônica de Varredura , Oxigênio/análise , Poliésteres , Esgotos/microbiologia
6.
Sci Total Environ ; 754: 142410, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254888

RESUMO

The effect of low temperatures on abiotic and biotic nitrate (NO3-) reduction by zero-valent iron (ZVI) were examined at temperatures below 25 °C. The extent and rate of nitrate removal in batch ZVI reactors were determined in the presence and absence of microorganisms at 3.5, 10, 17, and 25 °C. Under anoxic conditions, NO3- reduction rates in both ZVI-only and ZVI-cell reactors declined as temperature decreased. In ZVI-only reactor, 62% and 17% of initial nitrate concentration were reduced in 6 days at 25 and 3.5 °C, respectively. The reduced nitrate was completely recovered as ammonium ions (NH4+) at both temperatures. The temperature-dependent abiotic reduction rates enabled us to calculate the activation energy (Ea) using the Arrhenius relationship, which was 50 kJ/mol. Nitrate in ZVI-cell reactors was completely removed within 1-2 days at 25 and 10 °C, and 67% of reduction was achieved at 3.5 °C. Only 18-25% of the reduced nitrate was recovered as NH4+ in the ZVI-cell reactors. Soluble iron concentrations (Fe2+ and Fe3+) in the ZVI reactors were also measured as the indicators of anaerobic corrosion. In the ZVI-cell reactors, soluble iron concentrations were 1.7 times higher than that in ZVI-only reactors at 25 °C, suggesting that the enhanced nitrate reduction in the ZVI-cell reactors may be partly due to increased redox activity (i.e., corrosion) on iron surfaces. Anaerobic corrosion of ZVI was also temperature-dependent as substantially lower concentrations of corrosion product were detected at lower incubation temperatures; however, microbially induced corrosion (MIC) of ZVI was much less impacted at lower temperatures than abiotic ZVI corrosion. This study demonstrated that ZVI-supported microbial denitrification is not only more sustainable at lower temperatures, but it becomes more dominant reaction for nitrate removal in microbial-ZVI systems at low temperatures.


Assuntos
Ferro , Poluentes Químicos da Água , Animais , Temperatura Baixa , Nitratos , Óxidos de Nitrogênio , Temperatura
7.
Sci Total Environ ; 672: 927-937, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981168

RESUMO

Laminated hydrophobic membranes have been proposed as liners for container-based sanitation systems in developing countries. The laminate allows drying of fecal sludge, which might significantly reduce the frequency of container emptying, while containing liquids and solids. While previous laboratory tests demonstrated rapid drying of fecal sludge or water retained in laminates, experiments did not assess the effects of system dimension or scale on performance. In this study fecal sludge drying and water evaporation were evaluated in 3D laminate boxes (decimeter scale) or 3D laminate-lined 40 L and 55 gallon drums (meter scale) that are prototypes of toilet containers for field application. A stagnant film model described fecal sludge drying and water evaporation in the laminate boxes and laminate-lined drums well. The effective diffusion length (λ) for the laminate was fitted in all systems and increased with system dimension and scale: λ increased by a factor of 1.4 from 1D decimeter-scale envelopes to 3D decimeter-scale boxes, and by a factor of 1.3-1.7 from 3D decimeter-scale boxes to 3D meter-scale drums. The longer λ with increasing dimension and scale is likely due to nonuniform temperature and relative humidity in the air outside the laminate and nonuniform temperature within the laminate. Using best-fit λ for the laminate-lined 40 L and 55 gallon drum experiments conducted in a controlled laboratory, drying was predicted for an 11-day field experiment. Although the air temperature and relative humidity varied significantly in the field tests from -1 °C to 26 °C and 35% to 97%, respectively, the stagnant film model predicted drying over the 11-day period reasonably well with total error ≤ 13% using 24-h average air temperature and relative humidity. Drying of fecal sludge in laminate-lined drums in the field might be adequately described with a stagnant film model using daily-average weather conditions, if wind speeds are low.

8.
Water Res ; 148: 378-387, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396103

RESUMO

Nitrogen (N) removal in conventional bioretention systems is highly variable owing to the low nitrate (NO3-) elimination efficiency. We hypothesized that amending bioretention cells with biochar and zero-valent iron (ZVI) could improve the NO3- removal performance. A well-instrumented, bi-layer pilot-scale bioretention cell was developed to test the hypothesis by investigating its hydrologic performance and NO3- removal efficacy as affected by biochar and ZVI amendments. The cell containing 18% (v/v) wood biochar in the vadose zone and 10% (v/v) ZVI in the saturation zone was monitored for 18 months of field infiltration tests using synthetic stormwater amended with bromide (tracer) and NO3-. Compared to the Control cell without amendments, the Biochar/ZVI cell increased water retention by 11-27% and mean residence time by 0.7-3.8 h. The vadose zone of the Biochar/ZVI cell removed 30.6-95.7% (0.6-12.7 g) of NO3-N from the influent, as compared with -6.1-89.6% (-0.1-2.9 g) by that of the Control cell. While the performance varied with synthetic storm events and seasons, in all cases the Biochar/ZVI cell resulted in greater NO3- removal than the Control cell. This improvement was presumably due to biochar's ability to improve water retention, facilitate anoxic conditions, increase residence time, and provide electrons for microbial denitrification. The saturation zone with ZVI amendment further promoted NO3- removal: removal was 1.8 times greater relative to the control in the first infiltration test, but was minimal in following tests. The reduction in performance of the ZVI amendment in subsequent tests might be due to diminished NO3-N input to the saturation zone after treatment by the biochar-amended vadose zone. The redox potential and dissolved oxygen content at the vadose/saturation zone interface also indicated more favorable denitrification conditions in the Biochar/ZVI cell. Biochar amendment demonstrated significant promise for increasing nitrate removal in bioretention systems.


Assuntos
Carvão Vegetal , Nitratos , Desnitrificação , Ferro
9.
Chemosphere ; 72(2): 257-62, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18331753

RESUMO

Microbial reduction of nitrate in the presence of nanoscale zero-valent iron (NZVI) was evaluated to assess the feasibility of employing NZVI in the biological nitrate treatment. Nitrate was completely reduced within 3d in a nanoscale Fe(0)-cell reactor, while only 50% of the nitrate was abiotically reduced over 7d at 25 degrees C. The removal rate of nitrate in the integrated NZVI-cell system was unaffected by the presence of high amounts of sulfate. Efficient removal of nitrate by Fe(II)-supported anaerobic culture in 14 d indicated that Fe(II), which is produced during anaerobic iron corrosion in the Fe(0)-cell system, might act as an electron donor for nitrate. Unlike abiotic reduction, microbial reduction of nitrate was not significantly affected by low temperature conditions. This study demonstrated the potential applicability of employing NZVI iron as a source of electrons for biological nitrate reduction. Use of NZVI for microbial nitrate reduction can obviate the disadvantages associated with traditional biological denitrification, that relies on the use of organic substrates or explosive hydrogen gas, and maintain the advantages offered by nano-particle technology such as higher surface reactivity and functionality in suspensions.


Assuntos
Reatores Biológicos/microbiologia , Ferro/química , Nitratos/metabolismo , Anaerobiose , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biodegradação Ambiental , Estudos de Viabilidade , Nanotecnologia/métodos , Nitratos/química , Nitratos/isolamento & purificação , Oxirredução , Temperatura , Fatores de Tempo , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos
10.
J Hazard Mater ; 158(2-3): 652-5, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18328622

RESUMO

Reductive transformation of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and nitroglycerin (NG) by pyrite (FeS(2)) and magnetite (Fe(3)O(4)) was investigated to determine the role of Fe(II)-bearing minerals on the fate of toxic explosives in Fe/S-rich natural environment. Results from batch experiments showed that 65% of TNT and 45% of RDX were transformed from solution in the presence of pyrite under pH 7.4 buffered conditions within 32 days. Without a buffered solution, transformation of TNT and RDX decreased. NG was continuously and rapidly transformed by pyrite under both conditions. Complete removal of NG was achieved in 32 days under buffered conditions. NH(4)(+) was identified as a reduction product for RDX and NG in the pyrite-water system. Reductive transformation of RDX and NG by magnetite was slower than that by pyrite. The results suggest that abiotic transformation of the explosives by pyrite and magnetite may be considered when determining the fate of explosives in Fe/S-rich subsurface environments.


Assuntos
Óxido Ferroso-Férrico/química , Ferro/química , Nitroglicerina/química , Sulfetos/química , Triazinas/química , Trinitrotolueno/química
11.
J Hazard Mater ; 156(1-3): 17-22, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18179870

RESUMO

Kinetics of nitrate reduction by zero-valent iron at elevated temperatures was studied through batch and column experiments. It was hypothesized that under increased solution temperatures, the zero-valent iron may accelerate the reduction of nitrate by overcoming the activation energy barrier to nitrate reduction. The results of the batch experiment showed the synergistic effects of elevated temperature (75 degrees C) and a buffered condition (pH 7.4 with 0.1 M HEPES) to enhance the rate of nitrate reduction by zero-valent iron from 0.072+/-0.006 h(-1) ((0.35+/-0.03) x 10(-4) L m(-2) h(-1)) at room temperature to 1.39+/-0.23 h(-1) ((1.03+/-0.07) x 10(-3) L m(-2) h(-1)). Complete nitrate removal was obtained in a Fe(0) column after 30 min under both buffered and unbuffered conditions at 75 degrees C. These results indicate that a temperature increase could overcome the energy barrier. We suggest that an iron reduction process at moderately elevated temperature (50-75 degrees C) may be a suitable method for removing nitrate from industrial discharges.


Assuntos
Temperatura Alta , Ferro/química , Nitratos/química , Oxirredução
12.
Water Res ; 40(10): 2027-2032, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16697026

RESUMO

Microbial reduction of perchlorate in the presence of zero-valent iron was examined in both batch and column reactors to assess the potential of iron as the electron donor for biological perchlorate reduction process. Iron-supported mixed cultures completely removed 65 mg/L of perchlorate in batch reactors in 8 days. The removal rate was similar to that observed with hydrogen gas (5%) and acetate (173 mg/L) as electron donors. Repeated spiking of perchlorate to batch reactors containing iron granules and microorganisms showed that complete perchlorate reduction by the iron-supported culture was sustained over a long period. Complete removal of perchlorate by iron-supported anaerobic culture was also achieved in a bench-scale iron column with a hydraulic residence time of 2 days. This study demonstrated the potential applicability of zero-valent iron as a source of electrons for biological perchlorate reduction. Use of zero-valent iron may eliminate the need to continually supply electron donors such as organic substrates or explosive hydrogen gas. In addition, iron is inexpensive, safe to handle, and does not leave organic residuals in the treated water.


Assuntos
Reatores Biológicos/microbiologia , Ferro/química , Percloratos/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Biomassa , Oxirredução , Abastecimento de Água/normas
13.
J Hazard Mater ; 129(1-3): 304-7, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16243433

RESUMO

Kinetics of perchlorate reduction by elemental iron was examined at elevated temperatures using microwave heating and conventional block heating. It was hypothesized that increasing the solution temperature may accelerate the reduction of perchlorate by overcoming the high activation energy barrier. Results from microwave heating study showed that 98% of aqueous perchlorate was removed in 1 h at 200 degrees C. Similar results observed in control experiments with a block heater indicated that the enhancement in the extent and rate of perchlorate removal by elemental iron was mostly due to heat energy at high temperature. The rapid and complete reduction of perchlorate by elemental iron at elevated temperatures suggests that iron reduction process at elevated temperature may be an option to consider for complete removal of perchlorate from industrial discharges.


Assuntos
Ferro/química , Percloratos/química , Poluentes Químicos da Água , Purificação da Água/métodos , Temperatura Alta , Micro-Ondas , Oxirredução
14.
Water Environ Res ; 78(1): 19-25, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16553162

RESUMO

The objective of this research is to evaluate an integrated system coupling zero-valent iron (Fe(0)) and aerobic biological oxidation for the treatment of azo dye wastewater. Zero-valent (elemental) iron can reduce the azo bond, cleaving dye molecules into products that are more amenable to aerobic biological treatment processes. Azo dye reduction products, including aniline and sulfanilic acid, were shown to be readily biodegradable at concentrations up to approximately 25 mg/L. Batch reduction and biodegradation data support the proposed integrated iron pretreatment and activated sludge process for the degradation of the azo dyes orange G and orange I. The integrated system was able to decolorize dye solutions and yield effluents with lower total organic carbon concentrations than control systems without iron pretreatment. The success of the bench-scale integrated system suggests that iron pretreatment may be a feasible approach to treat azo dye containing wastewaters.


Assuntos
Compostos Azo/metabolismo , Ferro/química , Purificação da Água/métodos , Aerobiose , Anaerobiose , Compostos Azo/química , Bactérias Aeróbias/fisiologia , Bactérias Anaeróbias/fisiologia , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Espectrofotometria Ultravioleta , Fatores de Tempo , Eliminação de Resíduos Líquidos/métodos
15.
Water Environ Res ; 78(1): 26-30, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16553163

RESUMO

As part of a study to evaluate an integrated zero-valent iron (Fe(0))-biological oxidation process for treating azo dye wastewaters, we conducted batch and column experiments with the azo dye orange G to assess the effects of solution conditions on the performance of iron pretreatment. The influence of iron type and surface area, solution pH, dissolved inorganic salts, and phosphate ion on the reduction (decolorization) of orange G solution were examined. In batch experiments, increased iron surface area, decreased pH, and chloride and sulfate salts enhanced dye decolorization, whereas high pH (9.9) and phosphate concentrations (> 3 mg/L PO4-P) inhibited dye reduction. Results from batch experiments were confirmed in column experiments. An increase in temperature from 22 to 35 degrees C resulted in a near doubling of the reduction rate constant in a column study. The abiotic reduction results illustrate the feasibility and potential limitations of an integrated iron column, activated sludge treatment process for wastewaters containing azo dyes.


Assuntos
Compostos Azo/metabolismo , Ferro/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Cloretos/química , Cromatografia Líquida de Alta Pressão , Ferro/química , Fosfatos/química , Espectrofotometria Ultravioleta , Temperatura , Fatores de Tempo , Eliminação de Resíduos Líquidos/métodos
16.
Bioresour Technol ; 200: 891-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26600458

RESUMO

The denitrification of nitrate (NO3(-)) by mixed cultures in the presence of zero-valent iron [Fe(0)] and biochar was investigated through a series of batch experiments. It was hypothesized that biochar may provide microbes with additional electrons to enhance the anaerobic biotransformation of nitrate in the presence of Fe(0) by facilitating electron transfer. When compared to the anaerobic transformation of nitrate by microbes in the presence of Fe(0) alone, the presence of biochar significantly enhanced anaerobic denitrification by microbes with Fe(0). Graphite also promoted the anaerobic microbial transformation of nitrate with Fe(0), and it was speculated that electron-conducting graphene moieties were responsible for the improvement. The results obtained in this work suggest that nitrate can be effectively denitrified by microbes with Fe(0) and biochar in natural and engineered systems.


Assuntos
Bactérias/metabolismo , Carvão Vegetal/farmacologia , Desnitrificação/efeitos dos fármacos , Ferro/farmacologia , Nitratos/metabolismo , Bactérias/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Temperatura
17.
Water Res ; 39(20): 5027-32, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16290903

RESUMO

Hexahydro-1,3,5-trinitro-1,3,5-triazine (C3H6N3(NO2)3, royal demolition explosive or RDX) is a common nitramine explosive and one of the major constituents in wastewaters from ammunitions plants. The objective of this study is to investigate zero-valent iron (Fe0) pretreatment for enhancing the biodegradability of recalcitrant RDX. It was hypothesized that iron pretreatment can reductively transform RDX to products that are more amenable to biological treatment processes such as activated sludge. Results of batch and column experiments showed rapid and complete removal of RDX by Fe0 regardless of the buffering capacity. Formaldehyde (HCHO), a major reduction product of RDX, was readily biodegraded by a mixed culture. Respirometric data indicate that iron-treated RDX solution exerted substantially higher biochemical oxygen demand (BOD) than untreated RDX solution. We propose that an integrated iron reduction-activated sludge process may be a feasible option for treating RDX-laden wastewater.


Assuntos
Ferro/química , Triazinas/química , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Resíduos Industriais , Oxirredução , Esgotos/microbiologia , Triazinas/metabolismo
18.
Environ Toxicol Chem ; 24(11): 2812-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16398117

RESUMO

Reductive (pre)treatment with elemental iron is a potentially useful method for degrading nitramine explosives in water and soil. In the present study, we examined the kinetics, products, and mechanisms of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) degradation with elemental iron. Both RDX and HMX were transformed with iron to formaldehyde, NH4+, N2O, and soluble products. The yields of formaldehyde were relatively constant (71% +/- 5%), whereas the yields of NH4+ and N2O varied, depending on the nitramine and the mechanism. The reactions most likely were controlled by a surface process rather than by external mass transfer. Methylenedinitramine (MDNA) was an intermediate of both RDX and HMX and was transformed quantitatively to formaldehyde with iron. However, product distributions and kinetic modeling results suggest that MDNA represented a minor reaction path and accounted for only 30% of the RDX reacted and 14% of the formaldehyde produced. Additional experiments showed that RDX reduction with elemental iron could be mediated by graphite and Fe2+ sorbed to magnetite, as demonstrated previously for nitroaromatics and nitrate esters. Methylenedinitramine was degraded primarily through reduction in the presence of elemental iron, because its hydrolysis was slow compared to its reactions with elemental iron and surface-bound Fe2+. Our results show that in a cast iron-water system, RDX may be transformed via multiple mechanisms involving different reaction paths and reaction sites.


Assuntos
Aminas/química , Azocinas/química , Compostos Heterocíclicos com 1 Anel/química , Ferro/química , Nitrocompostos/química , Triazinas/química , Adsorção , Cátions Bivalentes/química , Cátions Bivalentes/farmacologia , Óxido Ferroso-Férrico/química , Formaldeído/análise , Formaldeído/química , Grafite/química , Ferro/farmacologia , Cinética , Oxirredução
19.
Environ Sci Pollut Res Int ; 22(22): 17917-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26165996

RESUMO

To better understand the potential impacts of metal oxide nanoparticles (NPs) on Gram(+) Bacillus subtilis and Gram(-) Escherichia coli (K12) bacteria, eight different nanosized titanium dioxide (TiO2) suspensions with five different concentrations were used. Water quality parameters (pH, temperature, and ionic strength), light sources, and light intensities were also changed to achieve different environmental conditions. The photosensitive TiO2 NPs were found to be harmful to varying degrees under ambient conditions, with antibacterial activity increasing with primary particle sizes from 16 to 20 nm. The presence of light was a significant factor under most conditions tested, presumably due to its role in promoting generation of reactive oxygen species (ROS). However, bacterial growth inhibition was also observed under dark conditions and different water quality parameters, indicating that undetermined mechanisms additional to photocatalytic ROS production were responsible for toxicity. The results also indicated that nano-TiO2 particles in the absence and the presence of photoactivation induced lipid peroxidation and cellular respiration disruption.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Luz , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas Metálicas/química , Viabilidade Microbiana/efeitos dos fármacos , Titânio/toxicidade , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/toxicidade , Fatores de Tempo , Titânio/química , Titânio/efeitos da radiação
20.
Water Res ; 37(17): 4275-83, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12946911

RESUMO

The effect of reductive treatment with elemental iron on the rate and extent of TOC removal by Fenton oxidation was studied for the explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using a completely stirred tank reactor (CSTR). The results support the hypothesis that TNT and RDX are reduced with elemental iron to products that are oxidized more rapidly and completely by Fenton's reagent. Iron pretreatment enhanced the extent of total organic carbon (TOC) removal by approximately 20% and 60% for TNT and RDX, respectively. Complete TOC removal was achieved for TNT and RDX solutions with iron pretreatment under optimal conditions. On the other hand, without iron pretreatment, complete TOC removal of TNT and RDX solutions was not achieved even with much higher H(2)O(2) and Fe(2+) concentrations. Nitrogen was recovered as NH(4)(+) and NO(3)(-) when Fe(0)-treated TNT and RDX solutions were subjected to Fenton oxidation. The bench-scale iron treatment-Fenton oxidation integrated system showed more than 95% TOC removal for TNT and RDX solutions under optimal conditions. These results suggest that the reduction products of TNT and RDX are more rapidly and completely degraded by Fenton oxidation and that a sequential iron treatment-Fenton oxidation process may be a viable technology for pink water treatment.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Oxidantes/química , Rodenticidas/química , Triazinas/química , Trinitrotolueno/química , Purificação da Água/métodos , Resíduos Industriais , Oxirredução , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA