Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 631(8020): 350-359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926577

RESUMO

Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.


Assuntos
Catecol Oxidase , Proteínas de Drosophila , Drosophila melanogaster , Hemócitos , Larva , Oxigênio , Traqueia , Animais , Oxigênio/metabolismo , Larva/metabolismo , Larva/imunologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/imunologia , Hemócitos/metabolismo , Catecol Oxidase/metabolismo , Traqueia/metabolismo , Traqueia/citologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/química , Transição de Fase , Cobre/metabolismo , Hemocianinas/metabolismo , Hemocianinas/química , Concentração de Íons de Hidrogênio , Transporte Biológico , Homeostase , Cristalização , Hipóxia/metabolismo , Precursores Enzimáticos
2.
Mol Cells ; 43(2): 114-120, 2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-31992020

RESUMO

Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/patogenicidade , Hematopoese/genética , Fatores de Transcrição/metabolismo , Animais
3.
Front Immunol ; 11: 63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082322

RESUMO

Drosophila hemocytes, like those of mammals, are given rise from two distinctive phases during both the embryonic and larval hematopoiesis. Embryonically derived hemocytes, mostly composed of macrophage-like plasmatocytes, are largely identified by genetic markers. However, the cellular diversity and distinct functions of possible subpopulations within plasmatocytes have not been explored in Drosophila larvae. Here, we show that larval plasmatocytes exhibit differential expressions of Hemolectin (Hml) and Peroxidasin (Pxn) during development. Moreover, removal of plasmatocytes by overexpressing pro-apoptotic genes, hid and reaper in Hml-positive plasmatocytes, feeding high sucrose diet, or wasp infestation results in increased circulating hemocytes that are Hml-negative. Interestingly these Hml-negative plasmatocytes retain Pxn expression, and animals expressing Hml-negative and Pxn-positive subtype largely attenuate growth and abrogate metabolism. Furthermore, elevated levels of a cytokine, unpaired 3, are detected when Hml-positive hemocytes are ablated, which in turn activates JAK/STAT activity in several tissues including the fat body. Finally, we observed that insulin signaling is inhibited in this background, which can be recovered by concurrent loss of upd3. Overall, this study highlights heterogeneity in Drosophila plasmatocytes and a functional plasticity of each subtype, which reaffirms extension of their role beyond immunity into metabolic regulation for cooperatively maintaining internal homeostatic balance.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Corpo Adiposo/metabolismo , Hemócitos/fisiologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição/metabolismo , Animais , Drosophila melanogaster/citologia , Crescimento/fisiologia , Hemócitos/citologia , Larva , Macrófagos/fisiologia , Transdução de Sinais
4.
Nat Commun ; 11(1): 4483, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900993

RESUMO

The Drosophila lymph gland, the larval hematopoietic organ comprised of prohemocytes and mature hemocytes, has been a valuable model for understanding mechanisms underlying hematopoiesis and immunity. Three types of mature hemocytes have been characterized in the lymph gland: plasmatocytes, lamellocytes, and crystal cells, which are analogous to vertebrate myeloid cells, yet molecular underpinnings of the lymph gland hemocytes have been less investigated. Here, we use single-cell RNA sequencing to comprehensively analyze heterogeneity of developing hemocytes in the lymph gland, and discover previously undescribed hemocyte types including adipohemocytes, stem-like prohemocytes, and intermediate prohemocytes. Additionally, we identify the developmental trajectory of hemocytes during normal development as well as the emergence of the lamellocyte lineage following active cellular immunity caused by wasp infestation. Finally, we establish similarities and differences between embryonically derived- and larval lymph gland hemocytes. Altogether, our study provides detailed insights into the hemocyte development and cellular immune responses at single-cell resolution.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Hemócitos/citologia , Hemócitos/metabolismo , Transcriptoma , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Linhagem da Célula/genética , Drosophila melanogaster/metabolismo , Ectoparasitoses/genética , Ectoparasitoses/metabolismo , Ectoparasitoses/patologia , Perfilação da Expressão Gênica , Hematopoese/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Tecido Linfoide/citologia , Tecido Linfoide/metabolismo , Tecido Linfoide/parasitologia , RNA-Seq , Análise de Célula Única , Vespas/patogenicidade
5.
Nat Commun ; 9(1): 2679, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992947

RESUMO

Drosophila hemocytes are akin to mammalian myeloid blood cells that function in stress and innate immune-related responses. A multi-potent progenitor population responds to local signals and to systemic stress by expanding the number of functional blood cells. Here we show mechanisms that demonstrate an integration of environmental carbon dioxide (CO2) and oxygen (O2) inputs that initiate a cascade of signaling events, involving multiple organs, as a stress response when the levels of these two important respiratory gases fall below a threshold. The CO2 and hypoxia-sensing neurons interact at the synaptic level in the brain sending a systemic signal via the fat body to modulate differentiation of a specific class of immune cells. Our findings establish a link between environmental gas sensation and myeloid cell development in Drosophila. A similar relationship exists in humans, but the underlying mechanisms remain to be established.


Assuntos
Dióxido de Carbono/metabolismo , Drosophila/metabolismo , Hemócitos/metabolismo , Oxigênio/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Hemócitos/citologia , Humanos , Hipóxia/metabolismo , Neurônios/metabolismo , Interferência de RNA , Transdução de Sinais
6.
Mol Cells ; 40(12): 976-985, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29237257

RESUMO

Iron is an essential divalent ion for aerobic life. Life has evolved to maintain iron homeostasis for normal cellular and physiological functions and therefore imbalances in iron levels exert a wide range of consequences. Responses to iron dysregulation in blood development, however, remain elusive. Here, we found that iron homeostasis is critical for differentiation of Drosophila blood cells in the larval hematopoietic organ, called the lymph gland. Supplementation of an iron chelator, bathophenanthroline disulfate (BPS) results in an excessive differentiation of the crystal cell in the lymph gland. This phenotype is recapitulated by loss of Fer1HCH in the intestine, indicating that reduced levels of systemic iron enhances crystal cell differentiation. Detailed analysis of Fer1HCH-tagged-GFP revealed that Fer1HCH is also expressed in the hematopoietic systems. Lastly, blocking Fer1HCH expression in the mature blood cells showed marked increase in the blood differentiation of both crystal cells and plasmatocytes. Thus, our work suggests a relevance of systemic and local iron homeostasis in blood differentiation, prompting further investigation of molecular mechanisms underlying iron regulation and cell fate determination in the hematopoietic system.


Assuntos
Drosophila/genética , Ferro/metabolismo , Animais , Diferenciação Celular , Homeostase , Transdução de Sinais
7.
HLA ; 89(2): 90-97, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28102036

RESUMO

BACKGROUND: Sanger-based DNA sequencing of exons 2+3 of HLA class I alleles from a heterozygote frequently results in two or more alternative genotypes. This study was undertaken to reduce the time and effort required to produce a single high resolution HLA genotype. MATERIALS AND METHODS: Samples were typed in parallel by Sanger sequencing and oligonucleotide probe hybridization. This workflow, together with optimization of analysis software, was tested and refined during the typing of over 42,000 volunteers for an unrelated hematopoietic progenitor cell donor registry. Next generation DNA sequencing (NGS) was applied to over 1000 of these samples to identify the alleles present within the G group designations. RESULTS: Single genotypes at G level resolution were obtained for over 95% of the loci without additional assays. The vast majority of alleles identified (>99%) were the primary allele giving the G groups their name. Only 0.7% of the alleles identified encoded protein variants that were not detected by a focus on the antigen recognition domain (ARD)-encoding exons. CONCLUSION: Our combined method routinely provides biologically relevant typing resolution at the level of the ARD. It can be applied to both single samples or to large volume typing supporting either bone marrow or solid organ transplantation using technologies currently available in many HLA laboratories.


Assuntos
Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Antígenos de Histocompatibilidade Classe I/genética , Teste de Histocompatibilidade/métodos , Hibridização de Ácido Nucleico/métodos , Sistema de Registros , Alelos , Sequência de Aminoácidos , Éxons , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Sondas de Oligonucleotídeos/química , Doadores não Relacionados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA