Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578737

RESUMO

Copper-doped zinc oxide nanoparticles (NPs) CuxZn1-xO (x = 0, 0.01, 0.02, 0.03, and 0.04) were synthesized via a sol-gel process and used as an active electrode material to fabricate a non-enzymatic electrochemical sensor for the detection of glucose. Their structure, composition, and chemical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) and Raman spectroscopies, and zeta potential measurements. The electrochemical characterization of the sensors was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Cu doping was shown to improve the electrocatalytic activity for the oxidation of glucose, which resulted from the accelerated electron transfer and greatly improved electrochemical conductivity. The experimental conditions for the detection of glucose were optimized: a linear dependence between the glucose concentration and current intensity was established in the range from 1 nM to 100 µM with a limit of detection of 0.7 nM. The proposed sensor exhibited high selectivity for glucose in the presence of various interfering species. The developed sensor was also successfully tested for the detection of glucose in human serum samples.


Assuntos
Técnicas Biossensoriais/métodos , Glicemia/análise , Cobre/química , Técnicas Eletroquímicas/métodos , Eletrodos , Nanopartículas/química , Óxido de Zinco/química , Humanos , Oxirredução
2.
J Mol Model ; 26(6): 149, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444916

RESUMO

Calix[n]arenes (abbreviated as CX[n]) are the macro-molecules based on phenol groups with a hydrophobic cavity to encapsulate a gas or small molecules. They are used as molecular vehicles. For instance, these molecules are used in the activation of the solubility of monomers in the specific media and in pharmaceutical drug delivery. The limit of the development of gaseous pollutants will be a vital subject in the future. The polluting gases NO3, NO2, CO2, N2, etc., need cage molecules, such as CX[4], to be encapsulated. In this report, the red shift of the H-bonding interactions of the CX[4]-gas (by adding the gas inside or outside the cavity) is clearly explained by the vibrational analysis. The electronic spectra of the complexes of CX[4] with NO3, NO2, CO2, and N2) exhibit a blue-shift pick in comparison with the ones observed for the CX[4] molecule. The electrophilic and nucleophilic sites of the stable host-guest have been investigated. Additionally, the non-covalent interactions have been calculated based on the reduced density gradient RDG and QTAIM theory.

3.
J Mol Model ; 26(1): 12, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31834480

RESUMO

Understanding the interactions of the cage molecules with a variety of invited molecules is getting very important. But, the hydrogen bonds can also play a crucial role in the interaction phenomenon. In this work, natural population analysis (NPA), chemical shifts, and atom in molecules (AIM) analysis have been used to identify the role of hydrogen bonds in the stability of CX[n] molecules. According to our calculation, the 13C NMR spectra are also sensitive to the nature of hydrogen bonds. We note that the DFT calculations have reproduced with a very good agreement, the experimentally observed chemical shifts of CX[4].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA