Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Semin Immunol ; 69: 101804, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406548

RESUMO

Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.


Assuntos
Inflamassomos , Piroptose , Animais , Humanos , Proteínas de Bactérias , Apoptose , Mediadores da Inflamação , Bactérias/metabolismo , Mamíferos/metabolismo
2.
EMBO Rep ; 22(6): e52175, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33938130

RESUMO

Upon Mycobacterium tuberculosis (Mtb) infection, protein kinase G (PknG), a eukaryotic-type serine-threonine protein kinase (STPK), is secreted into host macrophages to promote intracellular survival of the pathogen. However, the mechanisms underlying this PknG-host interaction remain unclear. Here, we demonstrate that PknG serves both as a ubiquitin-activating enzyme (E1) and a ubiquitin ligase (E3) to trigger the ubiquitination and degradation of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TGF-ß-activated kinase 1 (TAK1), thereby inhibiting the activation of NF-κB signaling and host innate responses. PknG promotes the attachment of ubiquitin (Ub) to the ubiquitin-conjugating enzyme (E2) UbcH7 via an isopeptide bond (UbcH7 K82-Ub), rather than the usual C86-Ub thiol-ester bond. PknG induces the discharge of Ub from UbcH7 by acting as an isopeptidase, before attaching Ub to its substrates. These results demonstrate that PknG acts as an unusual ubiquitinating enzyme to remove key components of the innate immunity system, thus providing a potential target for tuberculosis treatment.


Assuntos
Mycobacterium tuberculosis , Proteínas Quinases Dependentes de GMP Cíclico , Mycobacterium tuberculosis/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
FASEB J ; 35(11): e22009, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34694026

RESUMO

Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains a major cause of morbidity and mortality worldwide. Increasing lines of evidence indicate that certain individuals, which are termed resisters, are naturally resistant to TB infection. The resister phenotype has been linked to host efficient innate immune responses, but the underlying mechanisms and the key immune factors remain unclear. Here, we find that upon Mtb infection, monocyte-derived macrophages (MDMs) from TB resisters exhibited distinctly higher production of TNF-α, IL-1ß and IL-6, higher ratio of bacteria in acidic vacuoles, and lower intracellular bacterial loads, as compared to that from the healthy controls, individuals with latent TB infection, and TB patients. Such enhanced anti-Mtb immune capacity of macrophages from resisters largely depends on histone deacetylase 6 (HDAC6), whose expression is specifically maintained in MDMs from TB resisters during Mtb infection. Furthermore, we demonstrate that HDAC6 is required for acidification of Mtb-containing phagosomes in macrophages, thus controlling the intracellular survival of Mtb. Taken together, these findings unravel an indispensable role of HDAC6 in human innate resistance against Mtb infection, suggesting that HDAC6 may serve as a marker for individual TB risk as well as a novel host-directed anti-TB therapeutic target.


Assuntos
Resistência à Doença , Desacetilase 6 de Histona/imunologia , Imunidade Inata , Macrófagos/imunologia , Tuberculose/imunologia , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Macrófagos/citologia , Masculino , Pessoa de Meia-Idade
4.
FASEB J ; 34(11): 14631-14644, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918764

RESUMO

During spaceflight, astronauts are subjected to various physical stressors including microgravity, which could cause immune dysfunction and thus potentially predispose astronauts to infections and illness. However, the mechanisms by which microgravity affects innate immunity remain largely unclear. In this study, we conducted RNA-sequencing analysis to show that simulated microgravity (SMG) suppresses the production of inflammatory cytokines including tumor necrosis factor (TNF) and interleukin-6 (IL-6) as well as the activation of the innate immune signaling pathways including the p38 mitogen-activated protein kinase (MAPK) and the Erk1/2 MAPK pathways in the Enteropathogenic escherichia coli (EPEC)-infected macrophage cells. We then adopted hindlimb-unloading (HU) mice, a model mimicking the microgravity of a spaceflight environment, to demonstrate that microgravity suppresses proinflammatory cytokine-mediated intestinal immunity to Citrobacter rodentium infection and induces the disturbance of gut microbiota, both of which phenotypes could be largely corrected by the introduction of VSL#3, a high-concentration probiotic preparation of eight live freeze-dried bacterial species. Taken together, our study provides new insights into microgravity-mediated innate immune suppression and intestinal microbiota disturbance, and suggests that probiotic VSL#3 has great potential as a dietary supplement in protecting individuals from spaceflight mission-associated infections and gut microbiota dysbiosis.


Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal , Imunidade Inata , Sistema de Sinalização das MAP Quinases , Simulação de Ausência de Peso/efeitos adversos , Animais , Linhagem Celular Tumoral , Citrobacter rodentium/patogenicidade , Disbiose/microbiologia , Escherichia coli Enteropatogênica/patogenicidade , Feminino , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos
5.
Cell Mol Life Sci ; 77(10): 1859-1878, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31720742

RESUMO

Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of death worldwide from a single infectious pathogen. Mtb is a paradigmatic intracellular pathogen that primarily invades the lungs after host inhalation of bacteria-containing droplets via the airway. However, the majority of Mtb-exposed individuals can spontaneously control the infection by virtue of a robust immune defense system. The mucosal barriers of the respiratory tract shape the first-line defense against Mtb through various mucosal immune responses. After arriving at the alveoli, the surviving mycobacteria further encounter a set of host innate immune cells that exert multiple cellular bactericidal functions. Adaptive immunity, predominantly mediated by a range of different T cell and B cell subsets, is subsequently activated and participates in host anti-mycobacterial defense. During Mtb infection, host bactericidal immune responses are exquisitely adjusted and balanced by multifaceted mechanisms, including genetic and epigenetic regulation, metabolic regulation and neuroendocrine regulation, which are indispensable for maintaining host immune efficiency and avoiding excessive tissue injury. A better understanding of the integrated and equilibrated host immune defense system against Mtb will contribute to the development of rational TB treatment regimens especially novel host-directed therapeutics.


Assuntos
Infecções por HIV/imunologia , Imunidade Inata/imunologia , Pulmão/imunologia , Tuberculose/imunologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Linfócitos B/imunologia , Epigênese Genética/genética , Epigênese Genética/imunologia , Infecções por HIV/microbiologia , Infecções por HIV/patologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Pulmão/microbiologia , Pulmão/patologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Linfócitos T/imunologia , Tuberculose/microbiologia
6.
J Immunol ; 194(8): 3756-67, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25780035

RESUMO

Crucial to the pathogenesis of the tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis is its ability to subvert host immune defenses to promote its intracellular survival. The mammalian cell entry protein 3E (Mce3E), located in the region of difference 15 of the M. tuberculosis genome and absent in Mycobacterium bovis bacillus Calmette-Guérin, has an essential role in facilitating the internalization of mammalian cells by mycobacteria. However, relatively little is known about the role of Mce3E in modulation of host innate immune responses. In this study, we demonstrate that Mce3E inhibits the activation of the ERK1/2 signaling pathway, leading to the suppression of Tnf and Il6 expression, and the promotion of mycobacterial survival within macrophages. Mce3E interacts and colocalizes with ERK1/2 at the endoplasmic reticulum in a DEF motif (an ERK-docking motif)-dependent manner, relocates ERK1/2 from cytoplasm to the endoplasmic reticulum, and finally reduces the association of ERK1/2 with MEK1 and blocks the nuclear translocation of phospho-ERK1/2. A DEF motif mutant form of Mce3E (F294A) loses its ability to suppress Tnf and Il6 expression and to promote intracellular survival of mycobacteria. Inhibition of the ERK1/2 pathway in macrophages using U0126, a specific inhibitor of the ERK pathway, also leads to the suppressed Tnf and Il6 expression and the enhanced intracellular survival of mycobacteria. Taken together, these results suggest that M. tuberculosis Mce3E exploits the ERK1/2 signaling pathway to suppress host innate immune responses, providing a potential Mce3E-ERK1/2 interface-based drug target against M. tuberculosis.


Assuntos
Proteínas de Bactérias/imunologia , Núcleo Celular/imunologia , Imunidade Inata , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Mycobacterium tuberculosis/imunologia , Transporte Ativo do Núcleo Celular/imunologia , Animais , Butadienos/farmacologia , Linhagem Celular , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Humanos , Interleucina-6/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/imunologia , Mycobacterium bovis/imunologia , Nitrilas/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Tuberculose/patologia , Fator de Necrose Tumoral alfa/imunologia
7.
EMBO Mol Med ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030302

RESUMO

Chronic infections, including Mycobacterium tuberculosis (Mtb)-caused tuberculosis (TB), can induce host immune exhaustion. However, the key checkpoint molecules involved in this process and the underlying regulatory mechanisms remain largely undefined, which impede the application of checkpoint-based immunotherapy in infectious diseases. Here, through adopting time-of-flight mass cytometry and transcriptional profiling to systematically analyze natural killer (NK) cell surface receptors, we identify leukocyte immunoglobulin like receptor B1 (LILRB1) as a critical checkpoint receptor that defines a TB-associated cell subset (LILRB1+ NK cells) and drives NK cell exhaustion in TB. Mechanistically, Mtb-infected macrophages display high expression of human leukocyte antigen-G (HLA-G), which upregulates and activates LILRB1 on NK cells to impair their functions by inhibiting mitogen-activated protein kinase (MAPK) signaling via tyrosine phosphatases SHP1/2. Furthermore, LILRB1 blockade restores NK cell-dependent anti-Mtb immunity in immuno-humanized mice. Thus, LILRB1-HLA-G axis constitutes a NK cell immune checkpoint in TB and serves as a promising immunotherapy target.

8.
Cell Mol Immunol ; 20(2): 158-174, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596873

RESUMO

Dysregulation of gut homeostasis is associated with irritable bowel syndrome (IBS), a chronic functional gastrointestinal disorder affecting approximately 11.2% of the global population. The poorly understood pathogenesis of IBS has impeded its treatment. Here, we report that the E3 ubiquitin ligase tripartite motif-containing 27 (TRIM27) is weakly expressed in IBS but highly expressed in inflammatory bowel disease (IBD), a frequent chronic organic gastrointestinal disorder. Accordingly, knockout of Trim27 in mice causes spontaneously occurring IBS-like symptoms, including increased visceral hyperalgesia and abnormal stool features, as observed in IBS patients. Mechanistically, TRIM27 stabilizes ß-catenin and thus activates Wnt/ß-catenin signaling to promote intestinal stem cell (ISC) self-renewal. Consistent with these findings, Trim27 deficiency disrupts organoid formation, which is rescued by reintroducing TRIM27 or ß-catenin. Furthermore, Wnt/ß-catenin signaling activator treatment ameliorates IBS symptoms by promoting ISC self-renewal. Taken together, these data indicate that TRIM27 is critical for maintaining gut homeostasis, suggesting that targeting the TRIM27/Wnt/ß-catenin axis could be a potential treatment strategy for IBS. Our study also indicates that TRIM27 might serve as a potential biomarker for differentiating IBS from IBD.


Assuntos
Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Animais , Camundongos , beta Catenina , Autorrenovação Celular , Proteínas de Ligação a DNA , Homeostase , Síndrome do Intestino Irritável/patologia , Ubiquitina-Proteína Ligases , Intestinos/metabolismo
9.
Cell Rep ; 42(6): 112655, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37330913

RESUMO

The regulation of antiviral immunity is crucial in maintaining host immune homeostasis, a process that involves dynamic modulations of host organelles. The Golgi apparatus is increasingly perceived as a host organelle functioning as a critical platform for innate immunity, but the detailed mechanism by which it regulates antiviral immunity remains elusive. Here, we identify the Golgi-localized G protein-coupled receptor 108 (GPR108) as a regulator of type Ι interferon responses by targeting interferon regulatory factor 3 (IRF3). Mechanistically, GPR108 enhances the ubiquitin ligase Smad ubiquitylation regulatory factor 1 (Smurf1)-mediated K63-linked polyubiquitination of phosphorylated IRF3 for nuclear dot 10 protein 52 (NDP52)-dependent autophagic degradation, leading to suppression of antiviral immune responses against DNA or RNA viruses. Taken together, our study provides insight into the crosstalk between the Golgi apparatus and antiviral immunity via a dynamic and spatiotemporal regulation of GPR108-Smurf1 axis, thereby indicating a potential target for treating viral infection.


Assuntos
Antivirais , Receptores Acoplados a Proteínas G , Ubiquitina-Proteína Ligases , Antivirais/metabolismo , Complexo de Golgi/metabolismo , Imunidade Inata , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Receptores Acoplados a Proteínas G/metabolismo
10.
Nat Commun ; 14(1): 1430, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932056

RESUMO

Ferroptosis is a lipid peroxidation-driven and iron-dependent programmed cell death involved in multiple physical processes and various diseases. Emerging evidence suggests that several pathogens manipulate ferroptosis for their pathogenicity and dissemination, but the underlying molecular mechanisms remain elusive. Here, we identify that protein tyrosine phosphatase A (PtpA), an effector secreted by tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis (Mtb), triggers ferroptosis to promote Mtb pathogenicity and dissemination. Mechanistically, PtpA, through its Cys11 site, interacts with host RanGDP to enter host cell nucleus. Then, the nuclear PtpA enhances asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a) via targeting protein arginine methyltransferase 6 (PRMT6), thus inhibiting glutathione peroxidase 4 (GPX4) expression, eventually inducing ferroptosis to promote Mtb pathogenicity and dissemination. Taken together, our findings provide insights into molecular mechanisms of pathogen-induced ferroptosis, indicating a potential TB treatment via blocking Mtb PtpA-host PRMT6 interface to target GPX4-dependent ferroptosis.


Assuntos
Ferroptose , Mycobacterium tuberculosis , Tuberculose , Humanos , Virulência , Tuberculose/microbiologia , Mycobacterium tuberculosis/metabolismo , Histonas/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Peroxidação de Lipídeos , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo
11.
Autophagy ; 18(3): 576-594, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34092182

RESUMO

The eukaryotic-type protein kinase G (PknG), one of the eleven eukaryotic type serine-threonine protein kinase (STPK) in Mycobacterium tuberculosis (Mtb), is involved in mycobacterial survival within macrophages, presumably by suppressing phagosome and autophagosome maturation, which makes PknG an attractive drug target. However, the exact mechanism by which PknG inhibits pathogen clearance during mycobacterial infection remains largely unknown. Here, we show that PknG promotes macroautophagy/autophagy induction but inhibits autophagosome maturation, causing an overall effect of blocked autophagy flux and enhanced pathogen intracellular survival. PknG prevents the activation of AKT (AKT serine/threonine kinase) via competitively binding to its pleckstrin homology (PH) domain, leading to autophagy induction. Remarkably, PknG could also inhibit autophagosome maturation to block autophagy flux via targeting host small GTPase RAB14. Specifically, PknG directly interacts with RAB14 to block RAB14-GTP hydrolysis. Furthermore, PknG phosphorylates TBC1D4/AS160 (TBC1 domain family member 4) to suppress its GTPase-activating protein (GAP) activity toward RAB14. In macrophages and in vivo, PknG promotes Mtb intracellular survival through blocking autophagy flux, which is dependent on RAB14. Taken together, our data unveil a dual-functional bacterial effector that tightly regulates host autophagy flux to benefit pathogen intracellular survival.Abbreviations: AKT: AKT serine/threonine kinase; ATG5: autophagy related 5; BMDMs: bone marrow-derived macrophages; DTT: dithiothreitol; FBS: fetal calf serum; GAP: GTPase-activating protein; MOI: multiplicity of infection; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin kinase; OADC: oleic acid-albumin-dextrose-catalase; PC, phosphatidylcholine; PH: pleckstrin homology; PI3K: phosphoinositide 3-kinase; PknG: protein kinase G; PtdIns(3,4,5)P3: phosphatidylinositol(3,4,5)-trisphosphate; SQSTM1: sequestosome 1; STPK: serine-threonine protein kinase; TB: tuberculosis; TBC1D4: TBC1 domain family member 4; TPR: tetratricopeptide repeat; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Autofagia/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/farmacologia , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina , Tuberculose/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo
12.
Science ; 378(6616): eabq0132, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227980

RESUMO

The inflammasome-mediated cleavage of gasdermin D (GSDMD) causes pyroptosis and inflammatory cytokine release to control pathogen infection, but how pathogens evade this immune response remains largely unexplored. Here we identify the known protein phosphatase PtpB from Mycobacterium tuberculosis as a phospholipid phosphatase inhibiting the host inflammasome-pyroptosis pathway. Mechanistically, PtpB dephosphorylated phosphatidylinositol-4-monophosphate and phosphatidylinositol-(4,5)-bisphosphate in host cell membrane, thus disrupting the membrane localization of the cleaved GSDMD to inhibit cytokine release and pyroptosis of macrophages. Notably, this phosphatase activity requires PtpB binding to ubiquitin. Disrupting phospholipid phosphatase activity or the ubiquitin-interacting motif of PtpB enhanced host GSDMD-dependent immune responses and reduced intracellular pathogen survival. Thus, pathogens inhibit pyroptosis and counteract host immunity by altering host membrane composition.


Assuntos
Inflamassomos , Piroptose , Citocinas/metabolismo , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosfolipídeos , Monoéster Fosfórico Hidrolases/metabolismo , Ubiquitina/metabolismo
13.
Cell Mol Immunol ; 17(9): 901-913, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32728204

RESUMO

Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host-Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Imunidade Inata , Mycobacterium tuberculosis/fisiologia , Autofagia , DNA/metabolismo , Humanos
14.
Commun Biol ; 3(1): 604, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097805

RESUMO

Previous reports have suggested a link between pulmonary tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), and the development of lung adenocarcinoma (LUAD) and sarcoidosis. Furthermore, these lung diseases share certain clinical similarities that can challenge differential diagnosis in some cases. Here, through comparison of lung transcriptome-derived molecular signatures of TB, LUAD and sarcoidosis patients, we identify certain shared disease-related expression patterns. We also demonstrate that MKI67, an over-expressed gene shared by TB and LUAD, is a key mediator in Mtb-promoted tumor cell proliferation, migration, and invasion. Moreover, we reveal a distinct ossification-related TB lung signature, which may be associated with the activation of the BMP/SMAD/RUNX2 pathway in Mtb-infected macrophages that can restrain mycobacterial survival and promote osteogenic differentiation of mesenchymal stem cells. Taken together, these findings provide novel pathogenic links and potential molecular markers for better understanding and differential diagnosis of pulmonary TB, LUAD and sarcoidosis.


Assuntos
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , Sarcoidose/genética , Transcriptoma/genética , Tuberculose Pulmonar/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Biomarcadores , Diagnóstico Diferencial , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Sarcoidose/diagnóstico , Sarcoidose/metabolismo , Sarcoidose/patologia , Transdução de Sinais/genética , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia
15.
Cell Mol Immunol ; 16(4): 380-391, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29572547

RESUMO

The intracellular pathogen Mycobacterium tuberculosis (Mtb) can survive in the host and cause disease by interfering with a variety of cellular functions. The mammalian cell entry 2 (mce2) operon of Mtb has been shown to contribute to tuberculosis pathogenicity. However, little is known about the regulatory roles of Mtb Mce2 family proteins towards host cellular functions. Here we show that the Mce2 family protein Mce2E suppressed the macrophage innate immune response and promoted epithelial cell proliferation. Mce2E inhibited activation of the extracellular signal-regulated kinase (ERK) and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathways in a non-canonical D motif (a MAPK-docking motif)-dependent manner, leading to reduced expression of TNF and IL-6 in macrophages. Furthermore, Mce2E promoted proliferation of human lung epithelium-derived lung adenoma A549 cells by inhibiting K48-linked polyubiquitination of eEF1A1 in a ß strand region-dependent manner. In summary, Mce2E is a novel multifunctional Mtb virulence factor that regulates host cellular functions in a niche-dependent manner. Our data suggest a potential novel target for TB therapy.


Assuntos
Antígenos de Bactérias/fisiologia , Proteínas de Bactérias/fisiologia , Células Epiteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Motivos de Aminoácidos/genética , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Citocinas/metabolismo , Feminino , Humanos , Imunidade Inata , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Mycobacterium tuberculosis/patogenicidade , Fator 1 de Elongação de Peptídeos/metabolismo , Transplante Heterólogo , Ubiquitinação/genética , Ubiquitinação/imunologia , Fatores de Virulência/metabolismo
16.
Nat Commun ; 10(1): 1973, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036822

RESUMO

Ubiquitin-mediated xenophagy, a type of selective autophagy, plays crucial roles in host defense against intracellular pathogens including Mycobacterium tuberculosis (Mtb). However, the exact mechanism by which host ubiquitin targets invaded microbes to trigger xenophagy remains obscure. Here we show that ubiquitin could recognize Mtb surface protein Rv1468c, a previously unidentified ubiquitin-binding protein containing a eukaryotic-like ubiquitin-associated (UBA) domain. The UBA-mediated direct binding of ubiquitin to, but not E3 ubiquitin ligases-mediated ubiquitination of, Rv1468c recruits autophagy receptor p62 to deliver mycobacteria into LC3-associated autophagosomes. Disruption of Rv1468c-ubiquitin interaction attenuates xenophagic clearance of Mtb in macrophages, and increases bacterial loads in mice with elevated inflammatory responses. Together, our findings reveal a unique mechanism of host xenophagy triggered by direct binding of ubiquitin to the pathogen surface protein, and indicate a diplomatic strategy adopted by Mtb to benefit its persistent intracellular infection through controlling intracellular bacterial loads and restricting host inflammatory responses.


Assuntos
Autofagossomos/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , Ubiquitina/metabolismo , Imunidade Inata/fisiologia , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-29868514

RESUMO

Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an extremely successful pathogen that adapts to survive within the host. During the latency phase of infection, M. tuberculosis employs a range of effector proteins to be cloud the host immune system and shapes its lifestyle to reside in granulomas, sophisticated, and organized structures of immune cells that are established by the host in response to persistent infection. While normally being restrained in immunocompetent hosts, M. tuberculosis within granulomas can cause the recrudescence of TB when host immunity is compromised. Aside from causing TB, accumulating evidence suggests that M. tuberculosis is also associated with multiple other human diseases, such as pulmonary complications, autoimmune diseases, and metabolic syndromes. Furthermore, it has been recently appreciated that M. tuberculosis infection can also reciprocally interact with the human microbiome, which has a strong link to immune balance and health. In this review, we highlight the adaptive survival of M. tuberculosis within the host and provide an overview for regulatory mechanisms underlying interactions between M. tuberculosis infection and multiple important human diseases. A better understanding of how M. tuberculosis regulates the host immune system to cause TB and reciprocally regulates other human diseases is critical for developing rational treatments to better control TB and help alleviate its associated comorbidities.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Sistema Imunitário , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Doenças Autoimunes/complicações , Granuloma/imunologia , Humanos , Síndrome Metabólica/complicações , Interações Microbianas/imunologia , Microbiota , Recidiva , Tuberculose/complicações , Tuberculose/microbiologia , Tuberculose Pulmonar/complicações
18.
Nat Commun ; 8(1): 244, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811474

RESUMO

Mycobacterium tuberculosis PtpA is a secreted effector protein that dephosphorylates several proteins in the host cell cytoplasm, such as p-JNK, p-p38, and p-VPS33B, leading to suppression of host innate immunity. Here we show that, in addition, PtpA enters the nucleus of host cells and regulates the expression of host genes, some of which are known to be involved in host innate immunity or in cell proliferation and migration (such as GADD45A). PtpA can bind directly to the promoter region of GADD45A in vitro. Both phosphatase activity and DNA-binding ability of PtpA are important in suppressing host innate immune responses. Furthermore, PtpA-expressing Mycobacterium bovis BCG promotes proliferation and migration of human lung adenoma A549 cells in vitro and in a mouse xenograft model. Further research is needed to test whether mycobacteria, via PtpA, might affect cell proliferation or migration in humans. Mycobacterium tuberculosis secretes a protein, PtpA, that dephosphorylates proteins in the host cell cytoplasm, weakening immune responses. Here, the authors show that PtpA also enters the nucleus, affects the expression of several host genes, and promotes proliferation and migration of a cancer cell line.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium bovis/enzimologia , Mycobacterium tuberculosis/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Tuberculose/genética , Tuberculose/fisiopatologia , Animais , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium bovis/genética , Mycobacterium bovis/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/genética , Tuberculose/metabolismo
19.
Cell Mol Immunol ; 13(5): 560-76, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27524111

RESUMO

The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host-pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host-pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Ubiquitina/metabolismo , Animais , Humanos , Evasão da Resposta Imune , Fagossomos/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA