Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(8): e26714, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878300

RESUMO

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.


Assuntos
Encéfalo , Fenótipo , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Estudos de Coortes , Feminino , Masculino
2.
Can J Psychiatry ; 68(12): 894-903, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37254533

RESUMO

OBJECTIVES: Antipsychotics are widely used to treat first-episode psychosis but may have an anticholinergic burden, that is, a cumulative effect of medications that block the cholinergic system. Studies suggest that a high anticholinergic burden negatively affects memory in psychosis, where cognitive deficits, particularly those in verbal memory, are a core feature of the disease. The present study sought to replicate this in a large cohort of well-characterized first-episode psychosis patients. We expected that patients in the highest anticholinergic burden group would exhibit the poorest verbal memory compared to those with low anticholinergic burden and healthy controls at baseline (3 months following admission). We further hypothesized that over time, at month 12, patients' verbal memory performance would improve but would remain inferior to controls. METHODS: Patients (n = 311; low anticholinergic burden [n = 241] and high anticholinergic burden [n = 70], defined by a Drug Burden Index cut-off of 1) and healthy controls (n = 128) completed a clinical and neurocognitive battery including parts of the Wechsler Memory Scale at months 3 and 12. RESULTS: Cross-sectionally, using an analysis of variance, patients in the highest anticholinergic burden group had the poorest performance in verbal memory when compared to the other groups at month 3, F(2,430) = 52.33, P < 0.001. Longitudinally, using a Generalized Estimating Equation model, the verbal memory performance of all groups improved over time. However, patients' performance overall remained poorer than the controls. CONCLUSION: These findings highlight the importance of considering the anticholinergic burden when prescribing medications in the early stages of the disease.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Transtornos Psicóticos , Humanos , Antagonistas Colinérgicos/efeitos adversos , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/psicologia , Cognição , Disfunção Cognitiva/induzido quimicamente , Testes Neuropsicológicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-35995551

RESUMO

BACKGROUND: MR-guided focused ultrasound (MRgFUS) thalamotomy has been shown to be a safe and effective treatment for essential tremor (ET). OBJECTIVE: To investigate the effects of MRgFUS in patients with ET with an emphasis on ipsilateral-hand and axial tremor subscores. METHODS: Tremor scores and adverse effects of 100 patients treated between 2012 and 2018 were assessed at 1 week, 3, 12, and 24 months. A subgroup analysis of ipsilateral-hand tremor responders (defined as patients with ≥30% improvement at any time point) and non-responders was performed. Correlations and predictive factors for improvement were analysed. Weighted probabilistic maps of improvement were generated. RESULTS: Significant improvement in axial, contralateral-hand and total tremor scores was observed at all study visits from baseline (p<0.0001). There was no significant improvement in ipsilateral subscores. A subset of patients (n=20) exhibited group-level ipsilateral-hand improvement that remained significant through all follow-ups (p<0.001). Multivariate regression analysis revealed that higher baseline scores predict better improvement in ipsilateral-hand and axial tremor. Probabilistic maps demonstrated that the lesion hotspot for axial improvement was situated more medially than that for contralateral improvement. CONCLUSION: MRgFUS significantly improved axial, contralateral-hand and total tremor scores. In a subset of patients, a consistent group-level treatment effect was observed for ipsilateral-hand tremor. While ipsilateral improvement seemed to be less directly related to lesion location, a spatial relationship between lesion location and axial and contralateral improvement was observed that proved consistent with the somatotopic organisation of the ventral intermediate nucleus. TRIAL REGISTRATION NUMBERS: NCT01932463, NCT01827904, and NCT02252380.

4.
Brain ; 144(7): 1943-1957, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33704401

RESUMO

Neuroimaging genomic studies of autism spectrum disorder and schizophrenia have mainly adopted a 'top-down' approach, beginning with the behavioural diagnosis, and moving down to intermediate brain phenotypes and underlying genetic factors. Advances in imaging and genomics have been successfully applied to increasingly large case-control studies. As opposed to diagnostic-first approaches, the bottom-up strategy begins at the level of molecular factors enabling the study of mechanisms related to biological risk, irrespective of diagnoses or clinical manifestations. The latter strategy has emerged from questions raised by top-down studies: why are mutations and brain phenotypes over-represented in individuals with a psychiatric diagnosis? Are they related to core symptoms of the disease or to comorbidities? Why are mutations and brain phenotypes associated with several psychiatric diagnoses? Do they impact a single dimension contributing to all diagnoses? In this review, we aimed at summarizing imaging genomic findings in autism and schizophrenia as well as neuropsychiatric variants associated with these conditions. Top-down studies of autism and schizophrenia identified patterns of neuroimaging alterations with small effect-sizes and an extreme polygenic architecture. Genomic variants and neuroimaging patterns are shared across diagnostic categories suggesting pleiotropic mechanisms at the molecular and brain network levels. Although the field is gaining traction; characterizing increasingly reproducible results, it is unlikely that top-down approaches alone will be able to disentangle mechanisms involved in autism or schizophrenia. In stark contrast with top-down approaches, bottom-up studies showed that the effect-sizes of high-risk neuropsychiatric mutations are equally large for neuroimaging and behavioural traits. Low specificity has been perplexing with studies showing that broad classes of genomic variants affect a similar range of behavioural and cognitive dimensions, which may be consistent with the highly polygenic architecture of psychiatric conditions. The surprisingly discordant effect sizes observed between genetic and diagnostic first approaches underscore the necessity to decompose the heterogeneity hindering case-control studies in idiopathic conditions. We propose a systematic investigation across a broad spectrum of neuropsychiatric variants to identify putative latent dimensions underlying idiopathic conditions. Gene expression data on temporal, spatial and cell type organization in the brain have also considerable potential for parsing the mechanisms contributing to these dimensions' phenotypes. While large neuroimaging genomic datasets are now available in unselected populations, there is an urgent need for data on individuals with a range of psychiatric symptoms and high-risk genomic variants. Such efforts together with more standardized methods will improve mechanistically informed predictive modelling for diagnosis and clinical outcomes.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Genômica/métodos , Neuroimagem/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Transtorno do Espectro Autista/patologia , Humanos , Esquizofrenia/patologia
5.
Neuroimage ; 235: 117974, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766753

RESUMO

In the last few years, a significant amount of work has aimed to characterize maturational trajectories of cortical development. The role of pericortical microstructure putatively characterized as the gray-white matter contrast (GWC) at the pericortical gray-white matter boundary and its relationship to more traditional morphological measures of cortical morphometry has emerged as a means to examine finer grained neuroanatomical underpinnings of cortical changes. In this work, we characterize the GWC developmental trajectories in a representative sample (n = 394) of children and adolescents (~4 to ~22 years of age), with repeated scans (1-3 scans per subject, total scans n = 819). We tested whether linear, quadratic, or cubic trajectories of contrast development best described changes in GWC. A best-fit model was identified vertex-wise across the whole cortex via the Akaike Information Criterion (AIC). GWC across nearly the whole brain was found to significantly change with age. Cubic trajectories were likeliest for 63% of vertices, quadratic trajectories were likeliest for 20% of vertices, and linear trajectories were likeliest for 16% of vertices. A main effect of sex was observed in some regions, where males had a higher GWC than females. However, no sex by age interactions were found on GWC. In summary, our results suggest a progressive decrease in GWC at the pericortical boundary throughout childhood and adolescence. This work contributes to efforts seeking to characterize typical, healthy brain development and, by extension, can help elucidate aberrant developmental trajectories.


Assuntos
Córtex Cerebral , Substância Cinzenta , Desenvolvimento Humano , Substância Branca , Adolescente , Adulto , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Criança , Pré-Escolar , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Desenvolvimento Humano/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Fatores Sexuais , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Adulto Jovem
6.
Eur J Neurosci ; 53(3): 778-795, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33113245

RESUMO

It is well established that early blindness results in behavioural adaptations. While the functional effects of visual deprivation have been well researched, anatomical studies are scarce. The aim of this study was to investigate whole brain structural plasticity in a mouse model of congenital blindness. Volumetric analyses were conducted on high-resolution MRI images and histological sections from the same brains. These morphometric measurements were compared between anophthalmic and sighted ZRDBA mice obtained by breeding ZRDCT and DBA mice. Results from MRI analyses using the Multiple Automatically Generated Templates (MAGeT) method showed smaller volume for the primary visual cortex and superior colliculi in anophthalmic compared with sighted mice. Deformation-based morphometry revealed smaller volumes within the dorsal lateral geniculate nuclei and the lateral secondary visual cortex and larger volumes within olfactory areas, piriform cortex, orbital areas and the amygdala, in anophthalmic compared with sighted mice. Histological analyses revealed a larger volume for the amygdala and smaller volume for the superior colliculi, primary visual cortex and medial secondary visual cortex, in anophthalmic compared with sighted mice. The absence of superficial visual layers of the superior colliculus and the thinner cortical layer IV of the primary and secondary visual cortices may explain the smaller volume of these areas, although this was observed in a limited sample. The present study shows large-scale brain plasticity in a mouse model of congenital blindness. In addition, the congruence of MRI and histological findings support the use of MRI to investigate structural brain plasticity in the mouse.


Assuntos
Córtex Visual , Animais , Cegueira/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Corpos Geniculados , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos DBA , Plasticidade Neuronal , Córtex Visual/diagnóstico por imagem
7.
Hum Brain Mapp ; 42(8): 2399-2415, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33624390

RESUMO

There is evidence that multiple sclerosis (MS) pathology leads to distinct patterns of volume loss over time (VLOT) in different central nervous system (CNS) structures. We aimed to use such patterns to identify patient subgroups. MS patients of all classical disease phenotypes underwent annual clinical, blood, and MRI examinations over 6 years. Spinal, striatal, pallidal, thalamic, cortical, white matter, and T2-weighted lesion volumes as well as serum neurofilament light chain (sNfL) were quantified. CNS VLOT patterns were identified using principal component analysis and patients were classified using hierarchical cluster analysis. 225 MS patients were classified into four distinct Groups A, B, C, and D including 14, 59, 141, and 11 patients, respectively). These groups did not differ in baseline demographics, disease duration, disease phenotype distribution, and lesion-load expansion. Interestingly, Group A showed pronounced spinothalamic VLOT, Group B marked pallidal VLOT, Group C small between-structure VLOT differences, and Group D myelocortical volume increase and pronounced white matter VLOT. Neurologic deficits were more severe and progressed faster in Group A that also had higher mean sNfL levels than all other groups. Group B experienced more frequent relapses than Group C. In conclusion, there are distinct patterns of VLOT across the CNS in MS patients, which do not overlap with clinical MS subtypes and are independent of disease duration and lesion-load but are partially associated to sNfL levels, relapse rates, and clinical worsening. Our findings support the need for a more biologic classification of MS subtypes including volumetric and body-fluid markers.


Assuntos
Encéfalo , Progressão da Doença , Esclerose Múltipla , Medula Espinal , Adulto , Idoso , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/classificação , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Neuroimagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Adulto Jovem
8.
Brain ; 141(12): 3405-3414, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452554

RESUMO

Magnetic resonance guided focused ultrasound (MRgFUS) thalamotomy is a novel and minimally invasive ablative treatment for essential tremor. The size and location of therapeutic lesions producing the optimal clinical benefits while minimizing adverse effects are not known. We examined these relationships in patients with essential tremor undergoing MRgFUS. We studied 66 patients with essential tremor who underwent MRgFUS between 2012 and 2017. We assessed the Clinical Rating Scale for Tremor (CRST) scores at 3 months after the procedure and tracked the adverse effects (sensory, motor, speech, gait, and dysmetria) 1 day (acute) and 3 months after the procedure. Clinical data associated with the postoperative Day 1 lesions were used to correlate the size and location of lesions with tremor benefit and acute adverse effects. Diffusion-weighted imaging was used to assess whether acute adverse effects were related to lesions encroaching on nearby major white matter tracts (medial lemniscus, pyramidal, and dentato-rubro-thalamic). The area of optimal tremor response at 3 months after the procedure was identified at the posterior portion of the ventral intermediate nucleus. Lesions extending beyond the posterior region of the ventral intermediate nucleus and lateral to the lateral thalamic border were associated with increased risk of acute adverse sensory and motor effects, respectively. Acute adverse effects on gait and dysmetria occurred with lesions inferolateral to the thalamus. Lesions inferolateral to the thalamus or medial to the ventral intermediate nucleus were also associated with acute adverse speech effects. Diffusion-weighted imaging revealed that lesions associated with adverse sensory and gait/dysmetria effects compromised the medial lemniscus and dentato-rubro-thalamic tracts, respectively. Lesions associated with adverse motor and speech effects encroached on the pyramidal tract. Lesions larger than 170 mm3 were associated with an increased risk of acute adverse effects. Tremor improvement and acute adverse effects of MRgFUS for essential tremor are highly dependent on the location and size of lesions. These novel findings could refine current MRgFUS treatment planning and targeting, thereby improving clinical outcomes in patients.


Assuntos
Tremor Essencial/terapia , Tálamo/patologia , Terapia por Ultrassom , Idoso , Imagem de Tensor de Difusão , Tremor Essencial/diagnóstico , Tremor Essencial/patologia , Feminino , Humanos , Imagem por Ressonância Magnética Intervencionista , Masculino , Sensibilidade e Especificidade , Resultado do Tratamento , Substância Branca/patologia
9.
Eur J Neurosci ; 46(7): 2253-2264, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833754

RESUMO

Impulsivity is considered a vulnerability trait for addiction. Recently, we found trait non-planning impulsiveness measured with the Karolinska Scales of Personality was negatively correlated with dopamine D2/3 receptor availability in the ventral striatum of healthy humans. While also observed in rodents, human studies have failed to find this association with other measures of trait impulsivity. We explored whether another rodent finding, reduced ventral striatum volume with greater impulsivity, could also be observed in humans using this scale. Non-planning impulsiveness was measured in 52 healthy subjects (21 female; mean age: 33.06 ± 9.69) using the Karolinska Scales of Personality. Striatal subregion volumes, including the globus pallidus, were acquired using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Although failing to support our a priori hypothesis, there was a significant sex interaction in the post-commissural putamen with impulsiveness. Exploratory analyses revealed impulsiveness was negatively correlated with post-commissural putamen volumes in males, but positively correlated in females. We replicated this finding in males in an increased sample (including all 52 previous subjects) who provided impulsiveness measured by the Temperament and Character Inventory (n = 73; 32 female; mean age: 33.48 ± 9.75). These correlations by sex were statistically different from one another, the main finding with the Kasolinksa Scales of Personality surviving correction for multiple comparisons. While impulsivity may be related to reduced ventral striatal D2/3 receptors across sexes, males but not females may show significant reductions in post-commissural putamen volume. These findings have important implications for understanding biological markers underlying sex differences in drug addiction vulnerability.


Assuntos
Comportamento Impulsivo , Putamen/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Fatores Sexuais
10.
Proc Natl Acad Sci U S A ; 111(4): 1592-7, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474784

RESUMO

Growing access to large-scale longitudinal structural neuroimaging data has fundamentally altered our understanding of cortical development en route to human adulthood, with consequences for basic science, medicine, and public policy. In striking contrast, basic anatomical development of subcortical structures such as the striatum, pallidum, and thalamus has remained poorly described--despite these evolutionarily ancient structures being both intimate working partners of the cortical sheet and critical to diverse developmentally emergent skills and disorders. Here, to begin addressing this disparity, we apply methods for the measurement of subcortical volume and shape to 1,171 longitudinally acquired structural magnetic resonance imaging brain scans from 618 typically developing males and females aged 5-25 y. We show that the striatum, pallidum, and thalamus each follow curvilinear trajectories of volume change, which, for the striatum and thalamus, peak after cortical volume has already begun to decline and show a relative delay in males. Four-dimensional mapping of subcortical shape reveals that (i) striatal, pallidal, and thalamic domains linked to specific fronto-parietal association cortices contract with age whereas other subcortical territories expand, and (ii) each structure harbors hotspots of sexually dimorphic change over adolescence--with relevance for sex-biased mental disorders emerging in youth. By establishing the developmental dynamism, spatial heterochonicity, and sexual dimorphism of human subcortical maturation, these data bring our spatiotemporal understanding of subcortical development closer to that of the cortex--allowing evolutionary, basic, and clinical neuroscience to be conducted within a more comprehensive developmental framework.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/anatomia & histologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
11.
Psychiatry Res ; 334: 115791, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367455

RESUMO

Maternal smoking during pregnancy (MSDP) is considered a risk factor for ADHD. While the mechanisms underlying this association are not well understood, MSDP may impact the developing brain in ways that lead to ADHD. Here, we investigated the effect of prenatal smoking exposure on cortical brain structures in children with ADHD using two methods of assessing prenatal exposure: maternal recall and epigenetic typing. Exposure groups were defined according to: (1) maternal recall (+MSDP: n = 24; -MSDP: n = 85) and (2) epigenetic markers (EM) (+EM: n = 14 -EM: n = 21). CIVET-1.1.12 and RMINC were used to acquire cortical brain measurements and perform statistical analyses, respectively. The vertex with highest significance was tested for association with Continuous Performance Test (CPT) dimensions. While no differences of brain structures were identified between +MSDP and -MSDP, +EM children (n = 10) had significantly smaller surface area in the right orbitofrontal cortex (ROFc), middle temporal cortex (RTc) and parahippocampal gyrus (RPHg) (15% FDR) compared to -EM children (n = 20). Cortical surface area in the RPHg significantly correlated with CPT commission errors T-scores. This study suggests that molecular markers may better define exposure to environmental risks, as compared to human recall.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Criança , Feminino , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Fumar , Fatores de Risco , Fumar Tabaco
12.
Brain Imaging Behav ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478257

RESUMO

Although brain cholinergic denervation has been largely associated with cognitive decline in patients with Parkinson's disease (PD), new evidence suggests that cholinergic upregulation occurs in the hippocampus of PD patients without cognitive deficits. The specific hippocampal sectors and potential mechanisms of this cholinergic compensatory process have been further studied here, using MRI volumetry and morphometry coupled with molecular imaging using the PET radiotracer [18F]-Fluoroethoxybenzovesamicol ([18F]-FEOBV). Following a thorough screening procedure, 18 participants were selected and evenly distributed in three groups, including cognitively normal PD patients (PD-CN), PD patients with mild cognitive impairment (PD-MCI), and healthy volunteers (HV). Participants underwent a detailed neuropsychological assessment, structural MRI, and PET imaging with [18F]-FEOBV. Basal forebrain Ch1-Ch2 volumes were measured using stereotaxic mapping. Hippocampal subfields were automatically defined using the MAGeT-Brain segmentation algorithm. Cholinergic innervation density was quantified using [18F]-FEOBV uptake. Compared with HV, both PD-CN and PD-MCI displayed significantly reduced volumes in CA2-CA3 bilaterally. We found no other hippocampal subfield nor Ch1-Ch2 volume differences between the three groups. PET imaging revealed higher [18F]-FEOBV uptake in CA2-CA3 of the PD-CN compared with HV or PD-MCI. A positive correlation was observed between cognitive performances and [18F]-FEOBV uptake in the right CA2-CA3 subfield. Reduced volume, together with increased [18F]-FEOBV uptake, were observed specifically in the CA2-CA3 hippocampal subfields. However, while the volume change was observed in both PD-CN and PD-MCI, increased [18F]-FEOBV uptake was present only in the PD-CN group. This suggests that a cholinergic compensatory process takes place in the atrophied CA2-CA3 hippocampal subfields and might underlie normal cognition in PD.

13.
Schizophr Bull ; 50(2): 382-392, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37978044

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia is associated with widespread cortical thinning and abnormality in the structural covariance network, which may reflect connectome alterations due to treatment effect or disease progression. Notably, patients with treatment-resistant schizophrenia (TRS) have stronger and more widespread cortical thinning, but it remains unclear whether structural covariance is associated with treatment response in schizophrenia. STUDY DESIGN: We organized a multicenter magnetic resonance imaging study to assess structural covariance in a large population of TRS and non-TRS, who had been resistant and responsive to non-clozapine antipsychotics, respectively. Whole-brain structural covariance for cortical thickness was assessed in 102 patients with TRS, 77 patients with non-TRS, and 79 healthy controls (HC). Network-based statistics were used to examine the difference in structural covariance networks among the 3 groups. Moreover, the relationship between altered individual differentiated structural covariance and clinico-demographics was also explored. STUDY RESULTS: Patients with non-TRS exhibited greater structural covariance compared with HC, mainly in the fronto-temporal and fronto-occipital regions, while there were no significant differences in structural covariance between TRS and non-TRS or HC. Higher individual differentiated structural covariance was associated with lower general scores of the Positive and Negative Syndrome Scale in the non-TRS group, but not in the TRS group. CONCLUSIONS: These findings suggest that reconfiguration of brain networks via coordinated cortical thinning is related to treatment response in schizophrenia. Further longitudinal studies are warranted to confirm if greater structural covariance could serve as a marker for treatment response in this disease.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Afinamento Cortical Cerebral , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
14.
bioRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38826324

RESUMO

Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome- based identification to be successful and explored various features of these data.

15.
Nat Commun ; 15(1): 229, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172111

RESUMO

Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Neurônios
16.
Clin Neurophysiol ; 161: 122-132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461596

RESUMO

OBJECTIVE: To explore associations of the main component (P100) of visual evoked potentials (VEP) to pre- and postchiasmatic damage in multiple sclerosis (MS). METHODS: 31 patients (median EDSS: 2.5), 13 with previous optic neuritis (ON), and 31 healthy controls had VEP, optical coherence tomography and magnetic resonance imaging. We tested associations of P100-latency to the peripapillary retinal nerve fiber layer (pRNFL), ganglion cell/inner plexiform layers (GCIPL), lateral geniculate nucleus volume (LGN), white matter lesions of the optic radiations (OR-WML), fractional anisotropy of non-lesional optic radiations (NAOR-FA), and to the mean thickness of primary visual cortex (V1). Effect sizes are given as marginal R2 (mR2). RESULTS: P100-latency, pRNFL, GCIPL and LGN in patients differed from controls. Within patients, P100-latency was significantly associated with GCIPL (mR2 = 0.26), and less strongly with OR-WML (mR2 = 0.17), NAOR-FA (mR2 = 0.13) and pRNFL (mR2 = 0.08). In multivariate analysis, GCIPL and NAOR-FA remained significantly associated with P100-latency (mR2 = 0.41). In ON-patients, P100-latency was significantly associated with LGN volume (mR2 = -0.56). CONCLUSIONS: P100-latency is affected by anterior and posterior visual pathway damage. In ON-patients, damage at the synapse-level (LGN) may additionally contribute to latency delay. SIGNIFICANCE: Our findings corroborate post-chiasmatic contributions to the VEP-signal, which may relate to distinct pathophysiological mechanisms in MS.


Assuntos
Potenciais Evocados Visuais , Corpos Geniculados , Esclerose Múltipla , Vias Visuais , Humanos , Masculino , Feminino , Corpos Geniculados/fisiopatologia , Corpos Geniculados/diagnóstico por imagem , Adulto , Potenciais Evocados Visuais/fisiologia , Vias Visuais/fisiopatologia , Vias Visuais/diagnóstico por imagem , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Imageamento por Ressonância Magnética , Neurite Óptica/fisiopatologia , Neurite Óptica/diagnóstico por imagem
17.
Artigo em Inglês | MEDLINE | ID: mdl-36341843

RESUMO

INTRODUCTION: Schizophrenia-spectrum disorders (SSD) represent one of the leading causes of disability worldwide and are usually underpinned by neurodevelopmental brain abnormalities observed on a structural and functional level. Nuclear medicine imaging studies of cerebral blood flow (CBF) have already provided insights into the pathophysiology of these disorders. Recent developments in non-invasive MRI techniques such as arterial spin labeling (ASL) have allowed broader examination of CBF across SSD prompting us to conduct an updated literature review of MRI-based perfusion studies. In addition, we conducted a focused meta-analysis of whole brain studies to provide a complete picture of the literature on the topic. METHODS: A systematic OVID search was performed in Embase, MEDLINEOvid, and PsycINFO. Studies eligible for inclusion in the review involved: 1) individuals with SSD, first-episode psychosis or clinical-high risk for psychosis, or; 2) had healthy controls for comparison; 3) involved MRI-based perfusion imaging methods; and 4) reported CBF findings. No time span was specified for the database queries (last search: 08/2022). Information related to participants, MRI techniques, CBF analyses, and results were systematically extracted. Whole-brain studies were then selected for the meta-analysis procedure. The methodological quality of each included studies was assessed. RESULTS: For the systematic review, the initial Ovid search yielded 648 publications of which 42 articles were included, representing 3480 SSD patients and controls. The most consistent finding was that negative symptoms were linked to cortical fronto-limbic hypoperfusion while positive symptoms seemed to be associated with hyperperfusion, notably in subcortical structures. The meta-analysis integrated results from 13 whole-brain studies, across 426 patients and 401 controls, and confirmed the robustness of the hypoperfusion in the left superior and middle frontal gyri and right middle occipital gyrus while hyperperfusion was found in the left putamen. CONCLUSION: This updated review of the literature supports the implication of hemodynamic correlates in the pathophysiology of psychosis symptoms and disorders. A more systematic exploration of brain perfusion could complete the search of a multimodal biomarker of SSD.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Marcadores de Spin
18.
Res Sq ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162818

RESUMO

Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employed wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determined cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks are overlapping rather than disjoint. Our results show that multiple BOLD networks are detected via Ca2+ signals; there is considerable network overlap (both modalities); networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks; and, despite similarities, important differences are detected across modalities (e.g., brain region "network diversity"). In conclusion, Ca2+ imaging uncovered overlapping functional cortical organization in the mouse that reflected several, but not all, properties observed with fMRI-BOLD signals.

19.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014137

RESUMO

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about the spatial structure of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genomics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose Network Enrichment Significance Testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study phenotype associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.

20.
Brain Commun ; 5(6): fcad309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035364

RESUMO

Hippocampal atrophy is a well-known feature of age-related memory decline, and hippocampal subfields may contribute differently to this decline. In this cross-sectional study, we investigated the associations between hippocampal subfield volumes and performance in free recall and recognition memory tasks in both verbal and visual modalities in older adults without dementia. We collected MRIs from 97 (41 males) right-handed participants aged over 60. We segmented the right and left hippocampi into (i) dentate gyrus and cornu ammonis 4 (DG/CA4); (ii) CA2 and CA3 (CA2/CA3); (iii) CA1; (iv) strata radiatum, lacunosum and moleculare; and (v) subiculum. Memory was assessed with verbal free recall and recognition tasks, as well as visual free recall and recognition tasks. Amyloid-ß and hippocampal tau positivity were assessed using [18F]AZD4694 and [18F]MK6240 PET tracers, respectively. The verbal free recall and verbal recognition performances were positively associated with CA1 and strata radiatum, lacunosum and moleculare volumes. The verbal free recall and visual free recall were positively correlated with the right DG/CA4. The visual free recall, but not verbal free recall, was also associated with the right CA2/CA3. The visual recognition was not significantly associated with any subfield volume. Hippocampal tau positivity, but not amyloid-ß positivity, was associated with reduced DG/CA4, CA2/CA3 and strata radiatum, lacunosum and moleculare volumes. Our results suggest that memory performances are linked to specific subfields. CA1 appears to contribute to the verbal modality, irrespective of the free recall or recognition mode of retrieval. In contrast, DG/CA4 seems to be involved in the free recall mode, irrespective of verbal or visual modalities. These results are concordant with the view that DG/CA4 plays a primary role in encoding a stimulus' distinctive attributes, and that CA2/CA3 could be instrumental in recollecting a visual memory from one of its fragments. Overall, we show that hippocampal subfield segmentation can be useful for detecting early volume changes and improve our understanding of the hippocampal subfields' roles in memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA