Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 21(6): 2713-2726, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38706253

RESUMO

Breast cancer is one of the leading causes of mortality in women globally. The efficacy of breast cancer treatments, notably chemotherapy, is hampered by inadequate localized delivery of anticancer agents to the tumor site, resulting in compromised efficacy and increased systemic toxicity. In this study, we have developed redox-sensitive poly(lactic-co-glycolic acid) (PLGA) nanoparticles for the smart delivery of palbociclib (PLB) to breast cancer. The particle size of formulated PLB@PLGA-NPs (nonredox-sensitive) and RS-PLB@PLGA-NPs (redox-sensitive) NPs were 187.1 ± 1.8 nm and 193.7 ± 1.5 nm, respectively. The zeta potentials of nonredox-sensitive and redox-sensitive NPs were +24.99 ± 2.67 mV and +9.095 ± 1.87 mV, respectively. The developed NPs were characterized for morphological and various physicochemical parameters such as SEM, TEM, XRD, DSC, TGA, XPS, etc. The % entrapment efficiency of PLB@PLGA-NPs and RS-PLB@PLGA-NPs was found to be 85.48 ± 1.29% and 87.72 ± 1.55%, respectively. RS-PLB@PLGA-NPs displayed a rapid drug release at acidic pH and a higher GSH concentration compared to PLB@PLGA-NPs. The cytotoxicity assay in MCF-7 cells suggested that PLB@PLGA-NPs and RS-PLB@PLGA-NPs were 5.24-fold and 14.53-fold higher cytotoxic compared to the free PLB, respectively. Further, the cellular uptake study demonstrated that redox-sensitive NPs had significantly higher cellular uptake compared to nonredox-sensitive NPs and free Coumarin 6 dye. Additionally, AO/EtBr assay and reactive oxygen species analysis confirmed the superior activity of RS-PLB@PLGA-NPs over PLB@PLGA-NPs and free PLB. In vivo anticancer activity in dimethyl-benz(a)anthracene-induced breast cancer rats depicted that RS-PLB@PLGA-NPs was highly effective in reducing the tumor size, hypoxic tumor, and tumor vascularity compared to PLB@PLGA-NPs and free PLB. Further, hemocompatibility study reveals that the developed NPs were nonhemolytic to human blood. Moreover, an in vivo histopathology study confirmed that both nanoparticles were safe and nontoxic to the vital organs.


Assuntos
Neoplasias da Mama , Nanopartículas , Oxirredução , Piperazinas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Piridinas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Piridinas/química , Piridinas/administração & dosagem , Nanopartículas/química , Piperazinas/química , Piperazinas/farmacologia , Piperazinas/administração & dosagem , Ratos , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Liberação Controlada de Fármacos , Tamanho da Partícula , Portadores de Fármacos/química , Ratos Sprague-Dawley , Linhagem Celular Tumoral
2.
Nat Prod Res ; : 1-10, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646872

RESUMO

Parkinson's disease (PD) is characterised by the gradual demise of dopaminergic neurons. In recent years, there has been significant interest in herbal treatments. In this study, hesperetin nanoparticles (HTN) were developed and compared their anti-PD potential with hesperetin (HT) on rotenone induced PD rats. Molecular docking was also performed to evaluate the binding affinity of hesperetin on pathological protein, i.e. D2 dopamine receptors (DR2), using Auto Dock Vina tools. The results showed a higher binding relationship of HTN on dopamine receptors (-7.2 kcal/mol) compared to L-dopa (-6.4 kcal/mol), supporting their potential as drug candidates for PD therapy. HTN was effectively synthesised using the fabrication technique and characterised by zeta potential and SEM analysis. HTN had favourable characteristics, including a size of 249.8 ± 14.9 nm and a Z-potential of -32.9 mV. After being administered orally, HTN demonstrated a notable anti-Parkinsonian effects, indicated by the significant improvement in motor function as assessed by the rota rod test (p < .001***), pole test (p < .001***), stair test (p < .01**), wood walk test (p < .01**) and an increase in substantia nigra (SN) antioxidant levels, CAT (p < .001***), SOD (p < .001***), GSH (p < .01**). Additionally, HTN led to increased dopamine levels (p < .01**) and a decrease in the oxidant system, MDA levels (p < .01**). Furthermore, histopathological examination revealed decreased SN neuronal necrosis in diseased animals treated with HTN compared to those treated with HT in a rat model of Parkinson's disease. Therefore, HTN can be regarded as a viable platform for efficient therapy of PD.

3.
Heliyon ; 10(12): e33154, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022073

RESUMO

The present study examined the potential neuroprotective effects of aloe-emodin (AE) nanoparticles on the cerebral stroke-associated target protein myeloperoxidase (MPO). We investigated the binding interactions between AE and MPO through molecular docking and molecular dynamics simulations. Molecular docking results indicated that AE exhibited a binding energy of -6.9 kcal/mol, whereas it was -7.7 kcal/mol for 2-{[3,5-bis(trifluoromethyl)benzyl]amino}-n-hydroxy-6-oxo-1,6-dihydropyrimidine-5-carboxamide (CCl). Furthermore, molecular dynamics studies demonstrated that AE possesses a stronger binding affinity (-57.137 ± 13.198 kJ/mol) than does CCl (-22.793 ± 30.727 kJ/mol), suggesting that AE has a more substantial inhibitory effect on MPO than does CCl. Despite the therapeutic potential of AE for neurodegenerative disorders, its bioavailability is limited within the body. A proposed hypothesis to enhance the bioavailability of AE is its conversion into aloe-emodin nanoparticles (AENP). The AENPs synthesized through a fabrication method were spherical with a consistent diameter of 104.4 ± 7.9 nm and a polydispersity index ranging from 0.525 to 0.586. In rats experiencing cerebral stroke, there was a notable increase in cerebral infarction size; abnormalities in electrocardiogram (ECG) and electroencephalogram (EEG) patterns; a decrease in brain and cardiac antioxidant activities; and an increase in myeloperoxidase levels compared to those in normal rats. Compared with AE treatment, AENP treatment significantly ameliorated cerebral infarction, normalized ECG and EEG patterns, enhanced brain and cardiac antioxidant activities, and reduced MPO levels in stroke rats. Histopathological evaluations revealed pronounced alterations in the rat hippocampus, with pyknotic nuclei, disarray and loosely packed cells, deterioration of cardiac muscle fibers, and extensive damage to cardiac myocytes, in contrast to those in normal rats. AENP treatment mitigated these pathological changes more effectively than AE treatment in both brain and cardiac cells. These findings support that AENP provides considerable protection against stroke-associated myocardial infarction.

4.
Nanotheranostics ; 8(3): 401-426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751937

RESUMO

The integration of preclinical magnetic resonance imaging (MRI) and computed tomography (CT) methods has significantly enhanced the area of therapy and imaging of targeted nanomedicine. Nanotheranostics, which make use of nanoparticles, are a significant advancement in MRI and CT imaging. In addition to giving high-resolution anatomical features and functional information simultaneously, these multifunctional agents improve contrast when used. In addition to enabling early disease detection, precise localization, and personalised therapy monitoring, they also enable early disease detection. Fusion of MRI and CT enables precise in vivo tracking of drug-loaded nanoparticles. MRI, which provides real-time monitoring of nanoparticle distribution, accumulation, and release at the cellular and tissue levels, can be used to assess the efficacy of drug delivery systems. The precise localization of nanoparticles within the body is achievable through the use of CT imaging. This technique enhances the capabilities of MRI by providing high-resolution anatomical information. CT also allows for quantitative measurements of nanoparticle concentration, which is essential for evaluating the pharmacokinetics and biodistribution of nanomedicine. In this article, we emphasize the integration of preclinical MRI and CT into molecular imaging and therapy for advanced diseases.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética/métodos , Humanos , Tomografia Computadorizada por Raios X/métodos , Animais , Imagem Molecular/métodos , Nanopartículas/química , Nanomedicina Teranóstica/métodos
5.
ACS Appl Bio Mater ; 7(8): 5754-5770, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39115968

RESUMO

Effective targeting of breast tumors is critical for improving therapeutic outcomes in breast cancer treatment. Additionally, hypoxic breast cancers are difficult to treat due to resistance toward chemotherapeutics, poor vascularity, and enhanced angiogenesis, which complicate effective drug delivery and therapeutic response. Addressing this formidable challenge requires designing a drug delivery system capable of targeted delivery of the anticancer agent, inhibition of efflux pump, and suppression of the tumor angiogenesis. Here, we have introduced Palbociclib (PCB)-loaded PLGA nanoparticles (NPs) consisting of chitosan-folate (CS-FOL) for folate receptor-targeted breast cancer therapy. The developed NPs were below 219 nm with a smooth, spherical surface shape. The entrapment efficiencies of NPs were achieved up to 85.78 ± 1.8%. Targeted NPs demonstrated faster drug release at pH 5.5, which potentiated the therapeutic efficacy of NPs due to the acidic microenvironment of breast cancer. In vitro cellular uptake study in MCF-7 cells confirmed the receptor-mediated endocytosis of targeted NPs. In vivo ultrasound and photoacoustic imaging studies on rats with hypoxic breast cancer showed that targeted NPs significantly reduced tumor growth and hypoxic tumor volume, and suppressed angiogenesis.


Assuntos
Antineoplásicos , Ácido Fólico , Nanopartículas , Tamanho da Partícula , Técnicas Fotoacústicas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Humanos , Ácido Fólico/química , Animais , Nanopartículas/química , Feminino , Células MCF-7 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Teste de Materiais , Sistemas de Liberação de Medicamentos , Ultrassonografia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ratos Sprague-Dawley
6.
Drug Res (Stuttg) ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991529

RESUMO

Ischemic stroke remains the leading cause of death and disability, while the main mechanisms of dominant neurological damage in stroke contain oxidative stress and inflammation. Docking studies revealed a binding energy of - 6.1 kcal/mol for AG, while the co-crystallized ligand (CCl) exhibited a binding energy of - 7.3 kcal/mol with NOS. AG demonstrated favourable hydrogen bond interactions with amino acids ASN A:354 and ARG A:388 and hydrophobic interactions with GLU A:377. Molecular dynamics simulations throughout 100 ns indicated a binding affinity of - 27.65±2.88 kcal/mol for AG, compared to - 18.01±4.02 kcal/mol for CCl. These findings suggest that AG possesses a superior binding affinity for NOS compared to CCl, thus complementing the stability of NOS at the docked site.AG has limited applications owing to its low bioavailability, poor water solubility, and high chemical and metabolic instability.The fabrication method was employed in the preparation of AGNP, SEM analysis confirmed spherical shape with size in 19.4±5 nm and investigated the neuroprotective effect in cerebral stroke rats induced by 30 min of carotid artery occlusion followed by 4 hr reperfusion, evaluated by infarction size, ROS/RNS via GSH, MPO, NO estimationand AchE activity, and monitoring EEG function. Cortex and hippocampal histology were compared between groups. AGNP treatment significantly decreased Infarction size and increased GSH levels (p<0.01**), decreased MPO (p<0.01**), NO (p<0.01**), AchE (p<0.01**), restored to normal EEG amplitude, minimizing unsynchronized polyspikes and histological data revealed that increased pyramidal cell layer thickness and decreased apoptotic neurons in hippocampus, cortex appeared normal neurons with central large vesicular nuclei, containing one or more nucleoli in compared to AG treatment. Based on brain biochemical, histopathology reports AGNP exhibited significant cerebroprotective activity compared to AG on ischemic rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA