Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Hum Mol Genet ; 29(18): 3021-3031, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32833011

RESUMO

Loss of UBE3A expression, a gene regulated by genomic imprinting, causes Angelman syndrome (AS), a rare neurodevelopmental disorder. The UBE3A gene encodes an E3 ubiquitin ligase with three known protein isoforms in humans. Studies in mouse suggest that the human isoforms may have differences in localization and neuronal function. A recent case study reported mild AS phenotypes in individuals lacking one specific isoform. Here we have used CRISPR/Cas9 to generate isogenic human embryonic stem cells (hESCs) that lack the individual protein isoforms. We demonstrate that isoform 1 accounts for the majority of UBE3A protein in hESCs and neurons. We also show that UBE3A predominantly localizes to the cytoplasm in both wild type and isoform-null cells. Finally, we show that neurons lacking isoform 1 display a less severe electrophysiological AS phenotype.


Assuntos
Síndrome de Angelman/genética , Predisposição Genética para Doença , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/genética , Impressão Genômica/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Isoformas de Proteínas/genética
2.
Hum Mol Genet ; 29(19): 3285-3295, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977341

RESUMO

Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity. This disorder is caused by the absence of paternally expressed gene products from chromosome 15q11-q13. We previously demonstrated that knocking out ZNF274, a Kruppel-associated box-A-domain zinc finger protein capable of recruiting epigenetic machinery to deposit the H3K9me3 repressive histone modification, can activate expression from the normally silent maternal allele of SNORD116 in neurons derived from PWS induced pluripotent stem cells (iPSCs). However, ZNF274 has many other targets in the genome in addition to SNORD116. Depleting ZNF274 will surely affect the expression of other important genes and disrupt other pathways. Here, we used CRISPR/Cas9 to delete ZNF274 binding sites at the SNORD116 locus to determine whether activation of the maternal copy of SNORD116 could be achieved without altering ZNF274 protein levels. We obtained similar activation of gene expression from the normally silenced maternal allele in neurons derived from PWS iPSCs, compared with ZNF274 knockout, demonstrating that ZNF274 is directly involved in the repression of SNORD116. These results suggest that interfering with ZNF274 binding at the maternal SNORD116 locus is a potential therapeutic strategy for PWS.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/patologia , Síndrome de Prader-Willi/patologia , RNA Mensageiro Estocado/genética , RNA Nucleolar Pequeno/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Neurônios/metabolismo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(6): 2181-2186, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674673

RESUMO

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function from the maternal allele of UBE3A, a gene encoding an E3 ubiquitin ligase. UBE3A is only expressed from the maternally inherited allele in mature human neurons due to tissue-specific genomic imprinting. Imprinted expression of UBE3A is restricted to neurons by expression of UBE3A antisense transcript (UBE3A-ATS) from the paternally inherited allele, which silences the paternal allele of UBE3A in cis However, the mechanism restricting UBE3A-ATS expression and UBE3A imprinting to neurons is not understood. We used CRISPR/Cas9-mediated genome editing to functionally define a bipartite boundary element critical for neuron-specific expression of UBE3A-ATS in humans. Removal of this element led to up-regulation of UBE3A-ATS without repressing paternal UBE3A However, increasing expression of UBE3A-ATS in the absence of the boundary element resulted in full repression of paternal UBE3A, demonstrating that UBE3A imprinting requires both the loss of function from the boundary element as well as the up-regulation of UBE3A-ATS These results suggest that manipulation of the competition between UBE3A-ATS and UBE3A may provide a potential therapeutic approach for AS.


Assuntos
Cromatina/genética , Impressão Genômica , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/genética , Sítios de Ligação , Cromatina/metabolismo , Epistasia Genética , Éxons , Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Ligação Proteica , RNA Antissenso , RNA Longo não Codificante , Deleção de Sequência
4.
Nature ; 501(7465): 58-62, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23995680

RESUMO

Topoisomerases are expressed throughout the developing and adult brain and are mutated in some individuals with autism spectrum disorder (ASD). However, how topoisomerases are mechanistically connected to ASD is unknown. Here we find that topotecan, a topoisomerase 1 (TOP1) inhibitor, dose-dependently reduces the expression of extremely long genes in mouse and human neurons, including nearly all genes that are longer than 200 kilobases. Expression of long genes is also reduced after knockdown of Top1 or Top2b in neurons, highlighting that both enzymes are required for full expression of long genes. By mapping RNA polymerase II density genome-wide in neurons, we found that this length-dependent effect on gene expression was due to impaired transcription elongation. Interestingly, many high-confidence ASD candidate genes are exceptionally long and were reduced in expression after TOP1 inhibition. Our findings suggest that chemicals and genetic mutations that impair topoisomerases could commonly contribute to ASD and other neurodevelopmental disorders.


Assuntos
Transtorno Autístico/genética , DNA Topoisomerases Tipo I/metabolismo , Elongação da Transcrição Genética , Animais , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo II/deficiência , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Impressão Genômica/genética , Humanos , Camundongos , Mutação/genética , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II/metabolismo , Sinapses/metabolismo , Inibidores da Topoisomerase/farmacologia , Topotecan/farmacologia , Elongação da Transcrição Genética/efeitos dos fármacos
5.
Hum Mol Genet ; 23(9): 2364-73, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24363065

RESUMO

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two neurodevelopmental disorders most often caused by deletions of the same region of paternally inherited and maternally inherited human chromosome 15q, respectively. AS is a single gene disorder, caused by the loss of function of the ubiquitin ligase E3A (UBE3A) gene, while PWS is still considered a contiguous gene disorder. Rare individuals with PWS who carry atypical microdeletions on chromosome 15q have narrowed the critical region for this disorder to a 108 kb region that includes the SNORD116 snoRNA cluster and the Imprinted in Prader-Willi (IPW) non-coding RNA. Here we report the derivation of induced pluripotent stem cells (iPSCs) from a PWS patient with an atypical microdeletion that spans the PWS critical region. We show that these iPSCs express brain-specific portions of the transcripts driven by the PWS imprinting center, including the UBE3A antisense transcript (UBE3A-ATS). Furthermore, UBE3A expression is imprinted in most of these iPSCs. These data suggest that UBE3A imprinting in neurons only requires UBE3A-ATS expression, and no other neuron-specific factors. These data also suggest that a boundary element lying within the PWS critical region prevents UBE3A-ATS expression in non-neural tissues.


Assuntos
Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Deleção de Sequência/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Linhagem Celular , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
PLoS Genet ; 7(12): e1002422, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22242001

RESUMO

The Prader-Willi syndrome (PWS [MIM 17620]) and Angelman syndrome (AS [MIM 105830]) locus is controlled by a bipartite imprinting center (IC) consisting of the PWS-IC and the AS-IC. The most widely accepted model of IC function proposes that the PWS-IC activates gene expression from the paternal allele, while the AS-IC acts to epigenetically inactivate the PWS-IC on the maternal allele, thus silencing the paternally expressed genes. Gene order and imprinting patterns at the PWS/AS locus are well conserved from human to mouse; however, a murine AS-IC has yet to be identified. We investigated a potential regulatory role for transcription from the Snrpn alternative upstream exons in silencing the maternal allele using a murine transgene containing Snrpn and three upstream exons. This transgene displayed appropriate imprinted expression and epigenetic marks, demonstrating the presence of a functional AS-IC. Transcription of the upstream exons from the endogenous locus correlates with imprint establishment in oocytes, and this upstream exon expression pattern was conserved on the transgene. A transgene bearing targeted deletions of each of the three upstream exons exhibited loss of imprinting upon maternal transmission. These results support a model in which transcription from the Snrpn upstream exons directs the maternal imprint at the PWS-IC.


Assuntos
Síndrome de Angelman/genética , Impressão Genômica , Síndrome de Prader-Willi/genética , Proteínas Centrais de snRNP/genética , Alelos , Animais , Metilação de DNA , Epigênese Genética/genética , Éxons , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oócitos/metabolismo , RNA Mensageiro Estocado/genética , Transcrição Gênica
7.
Nat Commun ; 15(1): 5558, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977672

RESUMO

Deletion of the maternal UBE3A allele causes Angelman syndrome (AS); because paternal UBE3A is epigenetically silenced by a long non-coding antisense (UBE3A-ATS) in neurons, this nearly eliminates UBE3A protein in the brain. Reactivating paternal UBE3A holds promise for treating AS. We previously showed topoisomerase inhibitors can reactivate paternal UBE3A, but their therapeutic challenges prompted our search for small molecule unsilencers with a different mechanism of action. Here, we found that (S)-PHA533533 acts through a novel mechanism to significantly increase paternal Ube3a mRNA and UBE3A protein levels while downregulating Ube3a-ATS in primary neurons derived from AS model mice. Furthermore, peripheral delivery of (S)-PHA533533 in AS model mice induces widespread neuronal UBE3A expression. Finally, we show that (S)-PHA533533 unsilences paternal UBE3A in AS patient-derived neurons, highlighting its translational potential. Our findings provide a lead for developing a small molecule treatment for AS that could be safe, non-invasively delivered, and capable of brain-wide unsilencing of paternal UBE3A.


Assuntos
Síndrome de Angelman , Modelos Animais de Doenças , Neurônios , Ubiquitina-Proteína Ligases , Síndrome de Angelman/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Camundongos , Neurônios/metabolismo , Humanos , Masculino , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Encéfalo/metabolismo
8.
Hum Mol Genet ; 25(R2): R173-R181, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27493026
9.
Proc Natl Acad Sci U S A ; 107(41): 17668-73, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20876107

RESUMO

Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are neurodevelopmental disorders of genomic imprinting. AS results from loss of function of the ubiquitin protein ligase E3A (UBE3A) gene, whereas the genetic defect in PWS is unknown. Although induced pluripotent stem cells (iPSCs) provide invaluable models of human disease, nuclear reprogramming could limit the usefulness of iPSCs from patients who have AS and PWS should the genomic imprint marks be disturbed by the epigenetic reprogramming process. Our iPSCs derived from patients with AS and PWS show no evidence of DNA methylation imprint erasure at the cis-acting PSW imprinting center. Importantly, we find that, as in normal brain, imprinting of UBE3A is established during neuronal differentiation of AS iPSCs, with the paternal UBE3A allele repressed concomitant with up-regulation of the UBE3A antisense transcript. These iPSC models of genomic imprinting disorders will facilitate investigation of the AS and PWS disease processes and allow study of the developmental timing and mechanism of UBE3A repression in human neurons.


Assuntos
Síndrome de Angelman/genética , Diferenciação Celular/fisiologia , Impressão Genômica/genética , Modelos Biológicos , Células-Tronco Pluripotentes/fisiologia , Síndrome de Prader-Willi/genética , Primers do DNA/genética , Eletrofisiologia , Humanos , Imuno-Histoquímica , Neurônios/fisiologia , Reação em Cadeia da Polimerase , Ubiquitina-Proteína Ligases/genética
10.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693591

RESUMO

Angelman Syndrome (AS) and Prader-Willi Syndrome (PWS), two distinct neurodevelopmental disorders, result from loss of expression from imprinted genes in the chromosome 15q11-13 locus most commonly caused by a megabase-scale deletion on either the maternal or paternal allele, respectively. Each occurs at an approximate incidence of 1/15,000 to 1/30,000 live births and has a range of debilitating phenotypes. Patient-derived induced pluripotent stem cells (iPSCs) have been valuable tools to understand human-relevant gene regulation at this locus and have contributed to the development of therapeutic approaches for AS. Nonetheless, gaps remain in our understanding of how these deletions contribute to dysregulation and phenotypes of AS and PWS. Variability across cell lines due to donor differences, reprogramming methods, and genetic background make it challenging to fill these gaps in knowledge without substantially increasing the number of cell lines used in the analyses. Isogenic cell lines that differ only by the genetic mutation causing the disease can ease this burden without requiring such a large number of cell lines. Here, we describe the development of isogenic human embryonic stem cell (hESC) lines modeling the most common genetic subtypes of AS and PWS. These lines allow for a facile interrogation of allele-specific gene regulation at the chromosome 15q11-q13 locus. Additionally, these lines are an important resource to identify and test targeted therapeutic approaches for patients with AS and PWS.

11.
Stem Cell Reports ; 18(4): 884-898, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36898382

RESUMO

Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurodevelopmental disorder caused by maternal duplications of this region. Autism and epilepsy are key features of Dup15q. UBE3A, which encodes an E3 ubiquitin ligase, is likely a major driver of Dup15q because UBE3A is the only imprinted gene expressed solely from the maternal allele. Nevertheless, the exact role of UBE3A has not been determined. To establish whether UBE3A overexpression is required for Dup15q neuronal deficits, we generated an isogenic control line for a Dup15q patient-derived induced pluripotent stem cell line. Dup15q neurons exhibited hyperexcitability compared with control neurons, and this phenotype was generally prevented by normalizing UBE3A levels using antisense oligonucleotides. Overexpression of UBE3A resulted in a profile similar to that of Dup15q neurons except for synaptic phenotypes. These results indicate that UBE3A overexpression is necessary for most Dup15q cellular phenotypes but also suggest a role for other genes in the duplicated region.


Assuntos
Transtorno Autístico , Aberrações Cromossômicas , Cromossomos Humanos Par 15 , Ubiquitina-Proteína Ligases , Humanos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
J Cell Biochem ; 112(2): 365-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21268055

RESUMO

Epigenetic mechanisms play essential roles in mammalian neurodevelopment and genetic mutations or chromosomal deletions or duplications of epigenetically regulated loci or pathways result in several important human neurodevelopmental disorders. Postnatal mammalian neurons have among the most structured and dynamic nuclear organization of any cell type. Human chromosome 15q11-13 is an imprinted locus required for normal neurodevelopment and is regulated by a plethora of epigenetic mechanisms in neurons, including multiple noncoding RNAs, parentally imprinted transcription and histone modifications, large-scale chromatin decondensation, and homologous pairing in mature neurons of the mammalian brain. Here, we describe the multiple epigenetic layers regulating 15q11-13 gene expression and chromatin dynamics in neurons and propose a model of how noncoding RNAs may influence the unusual neuronal chromatin structure and dynamics at this locus. We also discuss the need for improved neuronal cell culture systems that model human 15q11-13 and other neurodevelopmental disorders with epigenetic bases in order to test the mechanisms of chromatin dynamics and nuclear organization in neurons. Induced pluripotent stem cells and other stem cell technologies hold promise for improved understanding of and therapeutic interventions for multiple human neurodevelopmental disorders.


Assuntos
Cromatina/genética , Epigênese Genética/genética , Animais , Impressão Genômica/genética , Humanos , Modelos Biológicos , Neurônios/metabolismo , RNA Nucleolar Pequeno/genética , RNA não Traduzido/genética
13.
Cell Rep Med ; 2(8): 100377, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467252

RESUMO

New research from Pandya and colleagues1 identifies PEG10 as a UBE3A-regulated protein that may underlie pathophysiology in Angelman syndrome neurons. PEG10 is a secreted protein, and this work suggests that it may be a potential biomarker for Angelman syndrome therapeutics under development.


Assuntos
Síndrome de Angelman , Ubiquitina-Proteína Ligases , Síndrome de Angelman/genética , Animais , Biomarcadores , Modelos Animais de Doenças , Neurônios , Ubiquitina-Proteína Ligases/genética
14.
Brain Behav ; 11(1): e01937, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151040

RESUMO

INTRODUCTION: Angelman syndrome (AS) is a neurodevelopmental disorder characterized by motor deficits, seizures, some autistic-like behaviors, and severe impairment of speech. A dysfunction of the maternally imprinted UBE3A gene, coupled with a functional yet silenced paternal copy, results in AS. Although studies of transgenic mouse models have revealed a great deal about neural populations and rescue timeframes for specific features of AS, these studies have largely failed to examine intermediate phenotypes that contribute to the profound communicative disabilities associated with AS. METHODS: Here, we use a variety of tasks, including assessments of rapid auditory processing and social communication. Expressive vocalizations were directly assessed and correlated against other core behavioral measures (motor, social, acoustic perception) to model putative influences on communication. RESULTS: AS mice displayed the characteristic phenotypes associated with Angelman syndrome (i.e., social and motor deficits), as well as marginal enhancements in rapid auditory processing ability. Our characterization of adult ultrasonic vocalizations further showed that AS mice produce fewer vocalizations and vocalized for a shorter amount of time when compared to controls. Additionally, a strong correlation between motor indices and ultrasonic vocalization output was shown, suggesting that the motor impairments in AS may contribute heavily to communication impairments. CONCLUSION: In summary, the combination of motor deficits, social impairment, marginal rapid auditory enhancements, and altered ultrasonic vocalizations reported in a mouse model of AS clearly parallel the human symptoms of the disorder. This mouse model offers a novel route to interrogate the underlying genetic, physiologic, and behavioral influences on the under-studied topic of impaired communication in AS.


Assuntos
Síndrome de Angelman , Síndrome de Angelman/genética , Animais , Comunicação , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Ubiquitina-Proteína Ligases
15.
Biol Psychiatry ; 90(11): 756-765, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34538422

RESUMO

BACKGROUND: Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurogenetic disorder caused by duplications of the maternal copy of this region. In addition to hypotonia, motor deficits, and language impairments, patients with Dup15q commonly meet the criteria for autism spectrum disorder and have a high prevalence of seizures. It is known from mouse models that synaptic impairments are a strong component of Dup15q pathophysiology; however, cellular phenotypes that relate to seizures are less clear. The development of patient-derived induced pluripotent stem cells provides a unique opportunity to study human neurons with the exact genetic disruptions that cause Dup15q. METHODS: Here, we explored electrophysiological phenotypes in induced pluripotent stem cell-derived neurons from 4 patients with Dup15q compared with 6 unaffected control subjects, 1 patient with a 15q11-q13 paternal duplication, and 3 patients with Angelman syndrome. RESULTS: We identified several properties of Dup15q neurons that could contribute to neuronal hyperexcitability and seizure susceptibility. Compared with control neurons, Dup15q neurons had increased excitatory synaptic event frequency and amplitude, increased density of dendritic protrusions, increased action potential firing, and decreased inhibitory synaptic transmission. Dup15q neurons also showed impairments in activity-dependent synaptic plasticity and homeostatic synaptic scaling. Finally, Dup15q neurons showed an increased frequency of spontaneous action potential firing compared with control neurons, in part due to disruption of KCNQ2 potassium channels. CONCLUSIONS: Together, these data point to multiple electrophysiological mechanisms of hyperexcitability that may provide new targets for the treatment of seizures and other phenotypes associated with Dup15q.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Células-Tronco Pluripotentes Induzidas , Animais , Transtorno do Espectro Autista/genética , Humanos , Camundongos , Neurônios , Fenótipo
16.
Neurobiol Dis ; 39(1): 13-20, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20304067

RESUMO

Human chromosome 15q11-q13 is subject to regulation by genomic imprinting, an epigenetic process by which genes are expressed in a parent-of-origin specific manner. Three neurodevelopmental disorders, Prader-Willi syndrome, Angelman syndrome, and 15q duplication syndrome, result from aberrant expression of imprinted genes in this region. Here, we review the current literature pertaining to mouse models and recently identified patients with atypical deletions, which shed light on the epigenetic regulation of the chromosome 15q11-q13 subregion and the genes that are responsible for the phenotypic outcomes of these disorders.


Assuntos
Cromossomos Humanos Par 15/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Predisposição Genética para Doença/genética , Impressão Genômica/genética , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Animais , Deficiências do Desenvolvimento/patologia , Humanos , Deficiência Intelectual/patologia
17.
Adv Neurobiol ; 25: 55-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32578144

RESUMO

The chromosome 15q11-q13 region of the human genome is regulated by genomic imprinting, an epigenetic phenomenon in which genes are expressed exclusively from one parental allele. Several genes within the 15q11-q13 region are expressed exclusively from the paternally inherited chromosome 15. At least one gene UBE3A, shows exclusive expression of the maternal allele, but this allele-specific expression is restricted to neurons. The appropriate regulation of imprinted gene expression across chromosome 15q11-q13 has important implications for human disease. Three different neurodevelopmental disorders result from aberrant expression of imprinted genes in this region: Prader-Willi syndrome (PWS), Angelman syndrome (AS), and 15q duplication syndrome.


Assuntos
Síndrome de Angelman , Síndrome de Prader-Willi , Síndrome de Angelman/genética , Cromossomos , Impressão Genômica/genética , Humanos , Síndrome de Prader-Willi/genética
18.
Open Biol ; 10(9): 200195, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32961075

RESUMO

Prader-Willi syndrome (PWS) is caused by the loss of function of the paternally inherited 15q11-q13 locus. This region is governed by genomic imprinting, a phenomenon in which genes are expressed exclusively from one parental allele. The genomic imprinting of the 15q11-q13 locus is established in the germline and is largely controlled by a bipartite imprinting centre. One part, termed the Prader-Willi syndrome imprinting center (PWS-IC), comprises a CpG island that is unmethylated on the paternal allele and methylated on the maternal allele. The second part, termed the Angelman syndrome imprinting centre, is required to silence the PWS_IC in the maternal germline. The loss of the paternal contribution of the imprinted 15q11-q13 locus most frequently occurs owing to a large deletion of the entire imprinted region but can also occur through maternal uniparental disomy or an imprinting defect. While PWS is considered a contiguous gene syndrome based on large-deletion and uniparental disomy patients, the lack of expression of only non-coding RNA transcripts from the SNURF-SNRPN/SNHG14 may be the primary cause of PWS. Patients with small atypical deletions of the paternal SNORD116 cluster alone appear to have most of the PWS related clinical phenotypes. The loss of the maternal contribution of the 15q11-q13 locus causes a separate and distinct condition called Angelman syndrome. Importantly, while much has been learned about the regulation and expression of genes and transcripts deriving from the 15q11-q13 locus, there remains much to be learned about how these genes and transcripts contribute at the molecular level to the clinical traits and developmental aspects of PWS that have been observed.


Assuntos
Síndrome de Prader-Willi/etiologia , Síndrome de Prader-Willi/terapia , Biomarcadores , Cromossomos Humanos Par 15 , Gerenciamento Clínico , Suscetibilidade a Doenças , Epigênese Genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Loci Gênicos , Impressão Genômica , Humanos , Fenótipo , Síndrome de Prader-Willi/diagnóstico , RNA não Traduzido
19.
Cell Chem Biol ; 27(12): 1510-1520.e6, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32966807

RESUMO

Genetic aberrations of the UBE3A gene encoding the E3 ubiquitin ligase E6AP underlie the development of Angelman syndrome (AS). Approximately 10% of AS individuals harbor UBE3A genes with point mutations, frequently resulting in the expression of full-length E6AP variants with defective E3 activity. Since E6AP exists in two states, an inactive and an active one, we hypothesized that distinct small molecules can stabilize the active state and that such molecules may rescue the E3 activity of AS-derived E6AP variants. Therefore, we established an assay that allows identifying modulators of E6AP in a high-throughput format. We identified several compounds that not only stimulate wild-type E6AP but also rescue the E3 activity of certain E6AP variants. Moreover, by chemical cross-linking coupled to mass spectrometry we provide evidence that the compounds stabilize an active conformation of E6AP. Thus, these compounds represent potential lead structures for the design of drugs for AS treatment.


Assuntos
Síndrome de Angelman/genética , Mutação Puntual , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Conformação Proteica , Ubiquitina-Proteína Ligases/química
20.
Stem Cells ; 26(6): 1496-505, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18403752

RESUMO

Polycomb repressive complex 2 (PRC2) methylates histone H3 tails at lysine 27 and is essential for embryonic development. The three core components of PRC2, Eed, Ezh2, and Suz12, are also highly expressed in embryonic stem (ES) cells, where they are postulated to repress developmental regulators and thereby prevent differentiation to maintain the pluripotent state. We performed gene expression and chimera analyses on low- and high-passage Eed(null) ES cells to determine whether PRC2 is required for the maintenance of pluripotency. We report here that although developmental regulators are overexpressed in Eed(null) ES cells, both low- and high-passage cells are functionally pluripotent. We hypothesize that they are pluripotent because they maintain expression of critical pluripotency factors. Given that EED is required for stability of EZH2, the catalytic subunit of the complex, these data suggest that PRC2 is not necessary for the maintenance of the pluripotent state in ES cells. We propose a positive-only model of embryonic stem cell maintenance, where positive regulation of pluripotency factors is sufficient to mediate stem cell pluripotency. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Repressoras/genética , Animais , Quimera/genética , Imuno-Histoquímica , Histona Desmetilases com o Domínio Jumonji , Lisina/metabolismo , Metilação , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases N-Desmetilantes/genética , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA