Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biochemistry ; 56(32): 4219-4234, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28656748

RESUMO

Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.


Assuntos
Monofosfato de Adenosina/química , Antiportadores de Potássio-Hidrogênio/química , Dobramento de Proteína , Multimerização Proteica , Shewanella/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Shewanella/genética , Shewanella/metabolismo
2.
Sci Adv ; 10(8): eadk3127, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394203

RESUMO

Epigenetic dysregulation has been reported in multiple cancers including leukemias. Nonetheless, the roles of the epigenetic reader Tudor domains in leukemia progression and therapy remain unexplored. Here, we conducted a Tudor domain-focused CRISPR screen and identified SGF29, a component of SAGA/ATAC acetyltransferase complexes, as a crucial factor for H3K9 acetylation, ribosomal gene expression, and leukemogenesis. To facilitate drug development, we integrated the CRISPR tiling scan with compound docking and molecular dynamics simulation, presenting a generally applicable strategy called CRISPR-Scan Assisted Drug Discovery (CRISPR-SADD). Using this approach, we identified a lead inhibitor that selectively targets SGF29's Tudor domain and demonstrates efficacy against leukemia. Furthermore, we propose that the structural genetics approach used in our study can be widely applied to diverse fields for de novo drug discovery.


Assuntos
Leucemia , Domínio Tudor , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Acetiltransferases/metabolismo , Descoberta de Drogas , Leucemia/tratamento farmacológico , Leucemia/genética
3.
Nat Struct Mol Biol ; 31(3): 465-475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316881

RESUMO

The plasma membrane is enriched for receptors and signaling proteins that are accessible from the extracellular space for pharmacological intervention. Here we conducted a series of CRISPR screens using human cell surface proteome and integrin family libraries in multiple cancer models. Our results identified ITGAV (integrin αV) and its heterodimer partner ITGB5 (integrin ß5) as the essential integrin α/ß pair for cancer cell expansion. High-density CRISPR gene tiling further pinpointed the integral pocket within the ß-propeller domain of ITGAV for integrin αVß5 dimerization. Combined with in silico compound docking, we developed a CRISPR-Tiling-Instructed Computer-Aided (CRISPR-TICA) pipeline for drug discovery and identified Cpd_AV2 as a lead inhibitor targeting the ß-propeller central pocket of ITGAV. Cpd_AV2 treatment led to rapid uncoupling of integrin αVß5 and cellular apoptosis, providing a unique class of therapeutic action that eliminates the integrin signaling via heterodimer dissociation. We also foresee the CRISPR-TICA approach to be an accessible method for future drug discovery studies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Membrana Celular
4.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302992

RESUMO

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Células-Tronco Neoplásicas/patologia , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA
5.
J Med Chem ; 66(23): 15801-15822, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38048437

RESUMO

Schistosomiasis is a disease affecting >200 million people worldwide, but its treatment relies on a single agent, praziquantel. To investigate new avenues for schistosomiasis control, we have conducted the first systematic analysis of bromodomain-containing proteins (BCPs) in a causative species, Schistosoma mansoni. Having identified 29 putative bromodomains (BRDs) in 22 S. mansoni proteins, we selected SmBRD3, a tandem BRD-containing BCP that shows high similarity to the human bromodomain and extra terminal domain (BET) family, for further studies. Screening 697 small molecules identified the human BET BRD inhibitor I-BET726 as a ligand for SmBRD3. An X-ray crystal structure of I-BET726 bound to the second BRD of SmBRD3 [SmBRD3(2)] enabled rational design of a quinoline-based ligand (15) with an ITC Kd = 364 ± 26.3 nM for SmBRD3(2). The ethyl ester pro-drug of compound 15 (compound 22) shows substantial effects on sexually immature larval schistosomula, sexually mature adult worms, and snail-infective miracidia in ex vivo assays.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Feminino , Humanos , Schistosoma mansoni , Oviposição , Ligantes , Esquistossomose mansoni/tratamento farmacológico
6.
Adv Sci (Weinh) ; 10(17): e2206584, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075745

RESUMO

Epigenetic dysregulation is reported in multiple cancers including Ewing sarcoma (EwS). However, the epigenetic networks underlying the maintenance of oncogenic signaling and therapeutic response remain unclear. Using a series of epigenetics- and complex-focused CRISPR screens, RUVBL1, the ATPase component of NuA4 histone acetyltransferase complex, is identified to be essential for EwS tumor progression. Suppression of RUVBL1 leads to attenuated tumor growth, loss of histone H4 acetylation, and ablated MYC signaling. Mechanistically, RUVBL1 controls MYC chromatin binding and modulates the MYC-driven EEF1A1 expression and thus protein synthesis. High-density CRISPR gene body scan pinpoints the critical MYC interacting residue in RUVBL1. Finally, this study reveals the synergism between RUVBL1 suppression and pharmacological inhibition of MYC in EwS xenografts and patient-derived samples. These results indicate that the dynamic interplay between chromatin remodelers, oncogenic transcription factors, and protein translation machinery can provide novel opportunities for combination cancer therapy.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Sarcoma de Ewing , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Linhagem Celular Tumoral , Transdução de Sinais/genética , Sarcoma de Ewing/genética , Cromatina , Epigênese Genética/genética , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/uso terapêutico , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/genética , DNA Helicases/genética , DNA Helicases/metabolismo
7.
Leukemia ; 36(1): 100-110, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34373586

RESUMO

Sphingolipids and their metabolic pathways have been implicated in disease development and therapeutic response; however, the detailed mechanisms remain unclear. Using a sphingolipid network focused CRISPR/Cas9 library screen, we identified an endoplasmic reticulum (ER) enzyme, 3-Ketodihydrosphingosine reductase (KDSR), to be essential for leukemia cell maintenance. Loss of KDSR led to apoptosis, cell cycle arrest, and aberrant ER structure. Transcriptomic analysis revealed the indispensable role of KDSR in maintaining the unfolded protein response (UPR) in ER. High-density CRISPR tiling scan and sphingolipid mass spectrometry pinpointed the critical role of KDSR's catalytic function in leukemia. Mechanistically, depletion of KDSR resulted in accumulated 3-ketodihydrosphingosine (KDS) and dysregulated UPR checkpoint proteins PERK, ATF6, and ATF4. Finally, our study revealed the synergism between KDSR suppression and pharmacologically induced ER-stress, underscoring a therapeutic potential of combinatorial targeting sphingolipid metabolism and ER homeostasis in leukemia treatment.


Assuntos
Oxirredutases do Álcool/metabolismo , Retículo Endoplasmático/fisiologia , Homeostase , Leucemia/patologia , Esfingolipídeos/metabolismo , Resposta a Proteínas não Dobradas , Oxirredutases do Álcool/genética , Apoptose , Proliferação de Células , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Leucemia/genética , Leucemia/metabolismo , Células Tumorais Cultivadas
8.
Sci Adv ; 8(51): eadc8911, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563143

RESUMO

Epigenetic dysregulation of cell cycle is a hallmark of tumorigenesis in multiple cancers, including hepatocellular carcinoma (HCC). Nonetheless, the epigenetic mechanisms underlying the aberrant cell cycle signaling and therapeutic response remain unclear. Here, we used an epigenetics-focused CRISPR interference screen and identified ACTR5 (actin-related protein 5), a component of the INO80 chromatin remodeling complex, to be essential for HCC tumor progression. Suppression of ACTR5 activated CDKN2A expression, ablated CDK/E2F-driven cell cycle signaling, and attenuated HCC tumor growth. Furthermore, high-density CRISPR gene tiling scans revealed a distinct HCC-specific usage of ACTR5 and its interacting partner IES6 compared to the other INO80 complex members, suggesting an INO80-independent mechanism of ACTR5/IES6 in supporting the HCC proliferation. Last, our study revealed the synergism between ACTR5/IES6-targeting and pharmacological inhibition of CDK in treating HCC. These results indicate that the dynamic interplay between epigenetic regulators, tumor suppressors, and cell cycle machinery could provide novel opportunities for combinational HCC therapy.

9.
STAR Protoc ; 2(4): 100874, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34746857

RESUMO

Cytotoxic natural killer cells kill tumors and infected cells. We carried out CRISPR-based gene editing and transcriptional regulation in hard-to-manipulate NK-92 cells. NK-92-based therapies were found to be safe and efficacious in preclinical studies of cancers. Here, we have pioneered the generation and validation of NK-92 cells constitutively expressing Cas9 or dCas9 for knockout (CRISPRko), transcriptional activation (CRISPRa), or transcriptional repression (CRISPRi) of genes. Our CRISPR-engineered NK-92 cell platforms can be modified for research and off-the-shelf therapeutic applications.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Cultura de Células/métodos , Edição de Genes/métodos , Células Matadoras Naturais/citologia , Linhagem Celular , Humanos , Células K562
10.
ACS Infect Dis ; 7(8): 2238-2249, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203208

RESUMO

The Trypanosoma cruzi (T. cruzi) parasite is the cause of Chagas disease, a neglected disease endemic in South America. The life cycle of the T. cruzi parasite is complex and includes transitions between distinct life stages. This change in phenotype (without a change in genotype) could be controlled by epigenetic regulation, and might involve the bromodomain-containing factors 1-5 (TcBDF1-5). However, little is known about the function of the TcBDF1-5. Here we describe a fragment-based approach to identify ligands for T. cruzi bromodomain-containing factor 3 (TcBDF3). We expressed a soluble construct of TcBDF3 in E. coli, and used this to develop a range of biophysical assays for this protein. Fragment screening identified 12 compounds that bind to the TcBDF3 bromodomain. On the basis of this screen, we developed functional ligands containing a fluorescence or 19F reporter group, and a photo-crosslinking probe for TcBDF3. These tool compounds will be invaluable in future studies on the function of TcBDF3 and will provide insight into the biology of T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Epigênese Genética , Escherichia coli , Humanos , Ligantes , Trypanosoma cruzi/genética
11.
Nat Commun ; 12(1): 4063, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210975

RESUMO

Identification of novel functional domains and characterization of detailed regulatory mechanisms in cancer-driving genes is critical for advanced cancer therapy. To date, CRISPR gene editing has primarily been applied to defining the role of individual genes. Recently, high-density mutagenesis via CRISPR tiling of gene-coding exons has been demonstrated to identify functional regions in genes. Furthermore, breakthroughs in combining CRISPR library screens with single-cell droplet RNA sequencing (sc-RNAseq) platforms have revealed the capacity to monitor gene expression changes upon genetic perturbations at single-cell resolution. Here, we present "sc-Tiling," which integrates a CRISPR gene-tiling screen with single-cell transcriptomic and protein structural analyses. Distinct from other reported single-cell CRISPR screens focused on observing gene function and gene-to-gene/enhancer-to-gene regulation, sc-Tiling enables the capacity to identify regulatory mechanisms within a gene-coding region that dictate gene activity and therapeutic response.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Neoplasias/genética , Fenótipo , Ensaios de Seleção de Medicamentos Antitumorais , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Testes Genéticos , Genoma Humano , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histonas , Humanos , Modelos Moleculares , Mutagênese , Transcriptoma
12.
J Med Chem ; 64(14): 10102-10123, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34255515

RESUMO

CREBBP (CBP/KAT3A) and its paralogue EP300 (KAT3B) are lysine acetyltransferases (KATs) that are essential for human development. They each comprise 10 domains through which they interact with >400 proteins, making them important transcriptional co-activators and key nodes in the human protein-protein interactome. The bromodomains of CREBBP and EP300 enable the binding of acetylated lysine residues from histones and a number of other important proteins, including p53, p73, E2F, and GATA1. Here, we report a work to develop a high-affinity, small-molecule ligand for the CREBBP and EP300 bromodomains [(-)-OXFBD05] that shows >100-fold selectivity over a representative member of the BET bromodomains, BRD4(1). Cellular studies using this ligand demonstrate that the inhibition of the CREBBP/EP300 bromodomain in HCT116 colon cancer cells results in lowered levels of c-Myc and a reduction in H3K18 and H3K27 acetylation. In hypoxia (<0.1% O2), the inhibition of the CREBBP/EP300 bromodomain results in the enhanced stabilization of HIF-1α.


Assuntos
Benzodiazepinonas/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Desenho de Fármacos , Proteína p300 Associada a E1A/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Benzodiazepinonas/síntese química , Benzodiazepinonas/química , Proteína de Ligação a CREB/metabolismo , Relação Dose-Resposta a Droga , Proteína p300 Associada a E1A/metabolismo , Células HCT116 , Humanos , Ligantes , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
13.
ACS Cent Sci ; 7(5): 792-802, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34075346

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global threat to human health. Using a multidisciplinary approach, we identified and validated the hepatitis C virus (HCV) protease inhibitor simeprevir as an especially promising repurposable drug for treating COVID-19. Simeprevir potently reduces SARS-CoV-2 viral load by multiple orders of magnitude and synergizes with remdesivir in vitro. Mechanistically, we showed that simeprevir not only inhibits the main protease (Mpro) and unexpectedly the RNA-dependent RNA polymerase (RdRp) but also modulates host immune responses. Our results thus reveal the possible anti-SARS-CoV-2 mechanism of simeprevir and highlight the translational potential of optimizing simeprevir as a therapeutic agent for managing COVID-19 and future outbreaks of CoV.

14.
Front Cell Dev Biol ; 7: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157223

RESUMO

Leukemias driven by chromosomal translocation of the mixed-lineage leukemia gene (MLL or KMT2A) are highly prevalent in pediatric oncology. The poor survival rate and lack of an effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The resulting chimeric products of MLL gene rearrangements, i.e., MLL-fusion proteins (MLL-FPs), are capable of transforming hematopoietic stem/progenitor cells (HSPCs) into leukemic blasts. The ability of MLL-FPs to reprogram HSPCs toward leukemia requires the involvement of multiple chromatin effectors, including the histone 3 lysine 79 methyltransferase DOT1L, the chromatin epigenetic reader BRD4, and the super elongation complex. These epigenetic regulators constitute a complicated network that dictates maintenance of the leukemia program, and therefore represent an important cluster of therapeutic opportunities. In this review, we will discuss the role of MLL and its fusion partners in normal HSPCs and hematopoiesis, including the links between chromatin effectors, epigenetic landscapes, and leukemia development, and summarize current approaches to therapeutic targeting of MLL-r leukemias.

15.
Gene ; 642: 367-375, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29155329

RESUMO

Enzymatic degradation of cellulosic waste to generate renewable biofuels has offered an attractive solution to the energy problem. Synergistic hydrolysis of cellulose residues requires the participation of three different types of cellulases - endoglucanases, exoglucanases, and ß-glucosidases (Bgl). Our group has been interested in using Bgl of Cellulomonas biazotea in studies designed to investigate cooperative action among different cellulases. We previously have cloned bgl genes encoding Cba and Cba3, which are C. biazotea Bgl isozymes representing two different Bgl families, respectively; specifically, Glycoside Hydrolase Family 3 (GH3) and Glycoside Hydrolase Family 1 (GH1). To gain an understanding of the complexity of Bgl in C. biazotea, we analyzed E. coli clones containing plasmids into which C. biazotea DNA had been inserted; these clones could hydrolyze 4-methylumbelliferyl ß-d-glucopyranoside (MUG) supplemented in solid agar media, suggesting they might contain bgl genes. Through restriction analysis and DNA sequencing, two novel bgl genes, designated cba4 and cba5 and encoding Cba4 (484 amino acids) and Cba5 (758 amino acids) were identified. Cba4 and Cba5 appear to be members of GH1 and GH3, respectively. Both Cba4 and Cba5 were concluded to be genuine cellobiases as each was found to enable their E. coli hosts to survive on media in which cellobiose was the sole carbon source. Despite lacking a typical secretory signal sequence, Cba4 and Cba5 are secretory proteins. Although they are isoenzymes, Cba, Cba3, Cba4, and Cba5 were shown to possess distinct substrate specificities. These four Bgl members may play important roles in hydrolyzing a wide variety of ß-glucosides including cellobiose and non-cellulosic substrates.


Assuntos
Cellulomonas/crescimento & desenvolvimento , Clonagem Molecular/métodos , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Celobiose/metabolismo , Cellulomonas/enzimologia , Cellulomonas/genética , Modelos Moleculares , Família Multigênica , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Especificidade por Substrato , beta-Glucosidase/química
16.
Sci Rep ; 7(1): 5581, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717146

RESUMO

Carbasugar sodium-glucose cotransporter 2 (SGLT2) inhibitors are highly promising drug candidates for the treatment of Type 2 diabetes mellitus (T2DM). However, the clinical usage of carbasugar SGLT2 inhibitors has been underexplored, due to the lengthy synthetic routes and the lack of structure-activity relationship (SAR) studies of these compounds. Herein, we report a concise and stereodivergent synthetic route towards some novel carbasugar SGLT2 inhibitors, featuring an underexploited, regioselective, and stereospecific palladium-catalyzed allyl-aryl coupling reaction. This synthetic strategy, together with computational modeling, revealed the unexpected SAR of these carbasugar SGLT2 inhibitors, and enabled the discovery of a highly selective and potent SGLT2 inhibitor.


Assuntos
Carbaçúcares/síntese química , Paládio/química , Inibidores do Transportador 2 de Sódio-Glicose/síntese química , Transportador 2 de Glucose-Sódio/química , Carbaçúcares/química , Carbaçúcares/farmacologia , Catálise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/química , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Relação Estrutura-Atividade
17.
Gene ; 493(1): 52-61, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22138482

RESUMO

A novel cellobiase gene, designated cba3, was cloned from Cellulomonas biazotea. Although cellobiase genes of C. biazotea were previously cloned, published and/or patented, they encoded ß-glucosidases all belonging to glycoside hydrolase family 3 (GH3); the new Cba3 cellobiase was identified to be a glycoside hydrolase family 1 (GH1) member, which represents the first discovered GH1 ß-glucosidase of C. biazotea. Escherichia coli transformants expressing recombinant Cba3 were shown to grow readily in minimal media using cellobiose as the sole carbon source, supporting the conclusion that Cba3 is a genuine cellobiase. The full-length cba3 gene was revealed by sequencing to be 1344 bp long. Cba3 deletants lacking either the N-terminal 10 amino acids or the C-terminal 10 residues were found to be biologically inactive, supporting the importance of both ends in catalysis. Like other GH1 ß-glucosidases, Cba3 was shown to contain the highly conserved NEP and ENG motifs, which are crucial for enzymatic activity. Despite lacking a classical N-terminal signal peptide, Cba3 was demonstrated to be a secretory protein. The findings that Cba3 is a cellobiase, and that it was expressed well as an extracellular protein in E. coli, support the potential of Cba3 for use with other cellulases in the hydrolysis of cellulosic biomass.


Assuntos
Cellulomonas/genética , Glicosídeo Hidrolases/química , beta-Glucosidase/química , Sequência de Aminoácidos , Sequência de Bases , Celobiose/genética , Clonagem Molecular , Escherichia coli/genética , Genes Bacterianos , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA