Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Res ; 82(8): 1482-1491, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247889

RESUMO

Cancer-related genes are under intense evolutionary pressure. In this study, we conjecture that X-linked tumor suppressor genes (TSG) are not protected by the Knudson's two-hit mechanism and are therefore subject to negative selection. Accordingly, nearly all mammalian species exhibited lower TSG-to-noncancer gene ratios on their X chromosomes compared with nonmammalian species. Synteny analysis revealed that mammalian X-linked TSGs were depleted shortly after the emergence of the XY sex-determination system. A phylogeny-based model unveiled a higher X chromosome-to-autosome relocation flux for human TSGs. This was verified in other mammals by assessing the concordance/discordance of chromosomal locations of mammalian TSGs and their orthologs in Xenopus tropicalis. In humans, X-linked TSGs are younger or larger in size. Consistently, pan-cancer analysis revealed more frequent nonsynonymous somatic mutations of X-linked TSGs. These findings suggest that relocation of TSGs out of the X chromosome could confer a survival advantage by facilitating evasion of single-hit inactivation. SIGNIFICANCE: This work unveils extensive trafficking of TSGs from the X chromosome to autosomes during evolution, thus identifying X-linked TSGs as a genetic Achilles' heel in tumor suppression.


Assuntos
Evolução Molecular , Genes Supressores de Tumor , Neoplasias , Cromossomo X , Animais , Humanos , Mamíferos/genética , Neoplasias/genética , Oncogenes , Sintenia , Cromossomo X/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA