Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2221253120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043535

RESUMO

The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen Pseudomonas aeruginosa for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.


Assuntos
Antibacterianos , Sideróforos , Sideróforos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ligantes , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ferro/metabolismo , Transdução de Sinais , Pseudomonas aeruginosa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo
2.
J Am Chem Soc ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39018427

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are found throughout the interstellar medium and are important markers for the evolution of galaxies and both star and planet formation. They are also widely regarded as a major source of carbon, which has implications in the search for extraterrestrial life. Herein we construct a melting point phase diagram for a series of phenanthrene/pyrene binary mixtures to identify the eutectic composition (75 mol % phenanthrene) and its melting point (83 °C). The molten oil obtained on heating this eutectic composition to 90 °C in aqueous solution is homogenized in the presence of a water-soluble polymeric emulsifier. On cooling to 20 °C, polydisperse spherical phenanthrene/pyrene hybrid microparticles are obtained. Varying the stirring rate and emulsifier type enables the mean microparticle diameter to be adjusted from 11 to 279 µm. Importantly, the phenanthrene content of individual microparticles remains constant during processing, as expected for the eutectic composition. These new hybrid microparticles form impact craters and undergo partial fragmentation when fired into a metal target at 1 km s-1 using a light gas gun. When fired into an aerogel target at the same speed, microparticles are located at the ends of characteristic "carrot tracks". Autofluorescence is observed in both types of experiments, which at first sight suggests minimal degradation. However, Raman microscopy analysis of the aerogel-captured microparticles indicates prominent pyrene signals but no trace of the more volatile phenanthrene component. Such differential ablation during aerogel capture is expected to inform the in situ analysis of PAH-rich cosmic dust in future space missions.

3.
Electrophoresis ; 45(5-6): 357-368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044267

RESUMO

The spatiotemporal accuracy of microscale magnetophoresis has improved significantly over the course of several decades of development. However, most of the studies so far were using magnetic microbead composed of nanosphere particle for magnetophoretic actuation purpose. Here, we developed an in-house method for magnetic sample analysis called quadrupole magnetic steering control (QMSC). QMSC was used to study the magnetophoretic behavior of polystyrene microbeads decorated with iron oxide nanospheres-coated polystyrene microbeads (IONSs-PS) and iron oxide nanorods-coated polystyrene microbeads (IONRs-PS) under the influence of a quadrupole low field gradient. During a 4-s QMSC experiment, the IONSs-PS and IONRs-PS were navigated to perform 180° flip and 90° turn formations, and their kinematic results (2 s before and 2 s after the flip/turn) were measured and compared. The results showed that the IONRs-PS suffered from significant kinematic disproportion, translating a highly uneven amount of kinetic energy from the same magnitude of magnetic control. Combining the kinematic analysis, transmission electron microscopy micrographs, and vibrating sample magnetometry measurements, it was found that the IONRs-PS experienced higher fluid drag force and had lower consistency than the IONSs-PS due to its extensive open fractal nanorod structure on the bead surface and uneven magnetization, which was attributed to its ferrimagnetic nature.


Assuntos
Compostos Férricos , Nanosferas , Nanotubos , Microesferas , Poliestirenos/química , Nanotubos/química
4.
Langmuir ; 40(1): 734-743, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128476

RESUMO

A deeper understanding of the key processes that determine the particle morphologies generated during aerosol droplet drying is highly desirable for spray-drying of powdered pharmaceuticals and foods, predicting the properties of atmospheric particles, and monitoring disease transmission. Particle morphologies are affected by the drying kinetics of the evaporating droplets, which are in turn influenced by the composition of the initial droplet as well as the drying conditions. Herein, we use polymerization-induced self-assembly (PISA) to prepare three types of sterically stabilized diblock copolymer nanoparticles comprising the same steric stabilizer block and differing core blocks with z-average diameters ranging from 32 to 238 nm. These well-defined nanoparticles enable a systematic investigation of the effect of the nanoparticle size and composition on the drying kinetics of aqueous aerosol droplets (20-28 µm radius) and the final morphology of the resulting microparticles. A comparative kinetics electrodynamic balance was used to obtain evaporation profiles for 10 examples of nanoparticles at a relative humidity (RH) of 0, 45, or 65%. Nanoparticles comprising the same core block with mean diameters of 32, 79, and 214 nm were used to produce microparticles, which were dried under different RH conditions in a falling droplet column. Scanning electron microscopy was used to examine how the drying kinetics influenced the final microparticle morphology. For dilute droplets, the chemical composition of the nanoparticles had no effect on the evaporation rate. However, employing smaller nanoparticles led to the formation of dried microparticles with a greater degree of buckling.

5.
Biomacromolecules ; 25(5): 2990-3000, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696732

RESUMO

Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.


Assuntos
Arginina , Nanopartículas , Nanopartículas/química , Adsorção , Arginina/química , Concentração de Íons de Hidrogênio , Polimerização , Dióxido de Silício/química , Polímeros/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/síntese química
6.
Macromol Rapid Commun ; 44(16): e2200903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36534428

RESUMO

RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46 -PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA46 -PIPGMA500 and PGEO5MA46 -PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination. In each case, the extent of functionalization is more than 99% as determined by 1 H NMR spectroscopy. Aqueous electrophoresis studies indicate that such derivatization converts initially neutral nanoparticles into zwitterionic nanoparticles with an isoelectric point at pH 7. DLS studies confirm that such histidine-derivatized nanoparticles remain colloidally stable over a wide pH range. A quartz crystal microbalance is employed at 25°C to assess the adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto planar stainless steel at pH 6. The histidine-bearing nanoparticles adsorb much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2 , SEM indicates a fractional surface coverage of 0.23 for the adsorbed nanoparticles.


Assuntos
Histidina , Nanopartículas , Histidina/química , Aço Inoxidável , Adsorção , Polímeros/química , Nanopartículas/química
7.
Environ Res ; 224: 115544, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822535

RESUMO

Conventional establishment of laboratory cultures of duckweed Lemna minor are prepared in beakers, Erlenmeyer flasks or Schott bottles. These conventional cultivation methods limit the available surface area for growth which then causes layering of fronds that reduces the efficiency of plants in sunlight capturing. Here, acrylic sheets were spray-coated with a superhydrophobic (SHP) beeswax suspension and these coated acrylic sheets were used as a novel cultivation platform for L. minor. L. minor was grown for 7 days in conventional glass jar which acted as the control and were compared to SHP coated acrylic (SHPA) and SHP coated acrylic with aluminium mesh centrally placed (SHPAM) at similar duration and cultivation conditions. Addition of mesh was to entrap the plantlets and fixed the plantlets' position on the growing platform. The effects of cultivation platforms on growth rate and biochemical compositions of L. minor were monitored. The highest biomass growth was obtained from SHPA cultivation where the relative growth rate (RGR) was 0.0909 ± 0.014 day-1 and the RGR was 2.17 times higher than the control. Moreover, L. minor harvested from SHPA displayed the highest values in total protein content, total carbohydrates content and crude lipid percentage. The values were 156.04 ± 12.13 mg/g, 94.75 ± 9.02 mg/g and 7.09 ± 1.14% respectively. However, the control showed the highest total chlorophyll content which was 0.7733 ± 0.042 mg/g FW. Although SHPA obtained a slightly lower chlorophyll content than the control, this growing platform is still promising as it displayed the highest growth rate as well as other biochemical composition. Hence, this study proved that the proposed method that applied superhydrophobic properties in cultivation of L. minor provided a larger surface area for L. minor to grow, which then resulted in a greater biomass production while simultaneously maintaining the quality of the biochemical compositions of duckweeds.


Assuntos
Araceae , Clorofila , Clorofila/metabolismo , Clorofila/farmacologia , Ceras/metabolismo , Ceras/farmacologia , Interações Hidrofóbicas e Hidrofílicas
8.
Biotechnol Appl Biochem ; 70(2): 568-580, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35767864

RESUMO

Eicosapentaenoic acid (EPA) could be extracted from diatoms such as Amphora sp. present abundantly in the ecosystems. In view of the key environmental and nutritional factors governing the diatoms growth rate, culture conditions were optimized for the biomass yield, total lipid content, EPA yield, and fatty acid composition under two main cultivation regimes: photoautotrophic and heterotrophic. The fastest growth rate about 0.20 ± 0.02 g/L and the highest EPA yield about 9.19 ± 3.56 mg EPA/g biomass were obtained by adding 10 g/L glucose and sucrose, respectively. Under photoautotrophic culture conditions, Amphora sp. rendered higher EPA yield at 100 rpm and 16:8 light/dark cycle. Total fatty acids produced predominantly comprised of an approximate 40-70% of saturated fatty acids, followed by 10-27% of monounsaturated fatty acids and then 8-25% of polyunsaturated fatty acids. These findings were able to pave a way for huge-scale microalgal biomass production in commercial EPA production.


Assuntos
Diatomáceas , Microalgas , Ácido Eicosapentaenoico , Biomassa , Ecossistema , Ácidos Graxos
9.
Ultrason Imaging ; 45(4): 175-186, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37129257

RESUMO

This study demonstrates the implementation of a shear wave reconstruction algorithm that enables concurrent acoustic radiation force impulse (ARFI) imaging and shear wave elasticity imaging (SWEI) of prostate cancer and zonal anatomy. The combined ARFI/SWEI sequence uses closely spaced push beams across the lateral field of view and simultaneously tracks both on-axis (within the region of excitation) and off-axis (laterally offset from the excitation) after each push beam. Using a large number of push beams across the lateral field of view enables the collection of higher signal-to-noise ratio (SNR) shear wave data to reconstruct the SWEI volume than is typically acquired. The shear wave arrival times were determined with cross-correlation of shear wave velocity signals in two dimensions after 3-D directional filtering to remove reflection artifacts. To combine data from serially interrogated lateral push locations, arrival times from different pushes were aligned by estimating the shear wave propagation time between push locations. Shear wave data acquired in an elasticity lesion phantom and reconstructed using this algorithm demonstrate benefits to contrast-to-noise ratio (CNR) with increased push beam density and 3-D directional filtering. Increasing the push beam spacing from 0.3 to 11.6 mm (typical for commercial SWEI systems) resulted in a 53% decrease in CNR. In human in vivo data, this imaging approach enabled high CNR (1.61-1.86) imaging of histologically-confirmed prostate cancer. The in vivo images had improved spatial resolution and CNR and fewer reflection artifacts as a result of the high push beam density, the high shear wave SNR, the use of multidimensional directional filtering, and the combination of shear wave data from different push beams.


Assuntos
Técnicas de Imagem por Elasticidade , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Imagens de Fantasmas , Razão Sinal-Ruído , Técnicas de Imagem por Elasticidade/métodos , Algoritmos
10.
J Shoulder Elbow Surg ; 32(9): 1857-1866, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263480

RESUMO

BACKGROUND: Patients undergoing a total shoulder arthroplasty (TSA) through a deltopectoral approach will require repair of the subscapularis tendon. There are no universal postoperative guidelines for rehabilitation of the subscapularis specifically. We hypothesize that the addition of a subscapularis-specific regimen will result in improved subscapularis strength and function. METHODS: Adult patients undergoing anatomic TSA for the treatment of primary glenohumeral osteoarthritis were included. Patients were randomized into either the traditional rehabilitation (TR) control group or the subscapularis rehabilitation (SR) group, which consisted of the traditional therapy along with early and additional subscapularis exercises. Baseline demographics, patient-reported outcome measures (PROMs), range of motion (ROM), provocative tests, and subscapularis strength using a handheld dynamometer were measured preoperatively at the initial clinic visit (ICV) as well as 3 months, 6 months, and 1 year postoperatively. The primary outcome of interest was a comparison of subscapularis strength between cohorts relative to preoperative baseline, whereas secondary outcomes were functional, ROM, and PROMs. RESULTS: Sixty-six patients were included in the final analysis (32 TR vs. 34 SR). There were no statistically significant differences between cohorts at the ICV with regard to demographics, baseline subscapularis strength, functional testing, or PROMs. All postoperative time points demonstrated similar subscapularis strength testing between TR and SR groups (P > .05). Additionally, peak and average subscapularis strength testing at 3, 6, and 12 months postoperatively were similar to baseline ICV testing in both groups. Both groups demonstrated improvements across several provocative tests, ROM, and PROM outcome metrics at every postoperative time point as compared to baseline ICV values (P < .05). CONCLUSIONS: Patients undergoing anatomic TSA return to baseline internal rotation strength by 3 months postoperatively and demonstrate significant improvements in function, ROM, and several patient-reported outcome measures. The addition of early and focused subscapularis strengthening exercises does not appear to significantly impact any outcomes when compared to traditional rehabilitation programs.


Assuntos
Artroplastia do Ombro , Osteoartrite , Articulação do Ombro , Adulto , Humanos , Manguito Rotador/cirurgia , Articulação do Ombro/cirurgia , Estudos Prospectivos , Osteoartrite/cirurgia , Amplitude de Movimento Articular , Resultado do Tratamento
11.
Angew Chem Int Ed Engl ; 62(10): e202218397, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651475

RESUMO

Epoxy-functional sterically-stabilized diblock copolymer nanoparticles (ca. 27 nm) are prepared via RAFT dispersion polymerization in mineral oil. Nanoparticle adsorption onto stainless steel is examined using a quartz crystal microbalance. Incorporating epoxy groups within the steric stabilizer chains results in a two-fold increase in the adsorbed amount, Γ, at 20 °C (7.6 mg m-2 ) compared to epoxy-core functional nanoparticles (3.7 mg m-2 ) or non-functional nanoparticles (3.8 mg m-2 ). A larger difference in Γ is observed at 40 °C; this suggests chemical adsorption of the nanoparticles rather than merely physical adsorption. A remarkable near five-fold increase in Γ is observed for ca. 50 nm epoxy-functional nanoparticles compared to non-functional nanoparticles (31.3 vs. 6.4 mg m-2 , respectively). Tribological studies confirm that chemical adsorption of the latter epoxy-functional nanoparticles leads to a significant reduction in friction between 60 °C and 120 °C.

12.
Langmuir ; 38(9): 2885-2894, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35192370

RESUMO

It is well known that sterically stabilized diblock copolymer nanoparticles can be readily prepared using polymerization-induced self-assembly. Recently, we reported that such nanoparticles can be employed as a dispersant to prepare micron-sized particles of a widely used fungicide (azoxystrobin) via ball milling. In the present study, we examine the effect of varying the nature of the steric stabilizer block, the mean nanoparticle diameter, and the glass transition temperature (Tg) of the core-forming block on the particle size and colloidal stability of such azoxystrobin microparticles. In addition, the effect of crosslinking the nanoparticle cores is also investigated. Laser diffraction studies indicated the formation of azoxystrobin microparticles of approximately 2 µm diameter after milling for between 15 and 30 min at 6000 rpm. Diblock copolymer nanoparticles comprising a non-ionic steric stabilizer, rather than a cationic or anionic steric stabilizer, were determined to be more effective dispersants. Furthermore, nanoparticles of up to 51 nm diameter enabled efficient milling and ensured overall suspension concentrate stability. Moreover, crosslinking the nanoparticle cores and adjusting the Tg of the core-forming block had little effect on the milling of azoxystrobin. Finally, we show that this versatile approach is also applicable to five other organic crystalline agrochemicals, namely pinoxaden, cyproconazole, difenoconazole, isopyrazam and tebuconazole. TEM studies confirmed the adsorption of sterically stabilized nanoparticles at the surface of such agrochemical microparticles. The nanoparticles are characterized using TEM, DLS, aqueous electrophoresis and 1H NMR spectroscopy, while the final aqueous' suspension concentrates comprising microparticles of the above six agrochemical actives are characterized using optical microscopy, laser diffraction and electron microscopy.


Assuntos
Agroquímicos , Nanopartículas , Nanopartículas/química , Tamanho da Partícula , Polimerização , Polímeros/química , Suspensões
13.
Soft Matter ; 18(35): 6757-6770, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040127

RESUMO

The RAFT aqueous emulsion polymerization of either methyl methacrylate (MMA) or benzyl methacrylate (BzMA) is conducted at 70 °C using poly(glycerol monomethacrylate) (PGMA) as a water-soluble precursor to produce sterically-stabilized diblock copolymer nanoparticles of approximately 30 nm diameter. Carboxylic acid- or morpholine-functional RAFT agents are employed to confer anionic or cationic functionality at the ends of the PGMA stabilizer chains, with a neutral RAFT agent being used as a control. Thus the electrophoretic footprint of such minimally-charged model nanoparticles can be adjusted simply by varying the solution pH. Giant (mm-sized) aqueous droplets containing such nanoparticles are then grown within a continuous phase of n-dodecane and a series of interfacial rheology measurements are conducted. The interfacial tension between the aqueous phase and n-dodecane is strongly dependent on the charge of the terminal group on the stabilizer chains. More specifically, neutral nanoparticles produce a significantly lower interfacial tension than either cationic or anionic nanoparticles. Moreover, adsorption of neutral nanoparticles at the n-dodecane-water interface produces higher interfacial elastic moduli than that observed for charged nanoparticles. This is because neutral nanoparticles can adsorb at much higher surface packing densities owing to the absence of electrostatic repulsive forces in this case.

14.
J Appl Microbiol ; 132(5): 3490-3514, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35061929

RESUMO

Biofilm secreted by microalgae are extracellular polymeric substances (EPSs) composed mainly of polysaccharides, proteins, nucleic acids and lipids. These EPSs immobilize the cells and stabilize biofilm, mediating adhesion towards solid surfaces. The EPSs valorization through industrial exploitations and scientific works is becoming more popular, but the bottleneck of such studies is the lack of consensus among researchers on the selection of detection techniques to be used, especially for novice researchers. It is a daunting task for any inexperienced researcher when they fail to identify the right tools needed for microalgal biofilm studies. In this review, a well-refined analysis protocol about microalgal biofilm and EPSs were prepared including its extraction and characterization. Pros and cons of various detection techniques were addressed and cutting-edge methods to study biofilm EPSs were highlighted. Future perspectives were also presented at the end of this review to bridge research gaps in studying biofilm adhesion via EPSs production. Ultimately, this review aims to assist novice researchers in making the right choices in their research studies on microalgal biofilms in accordance to the available technologies and needs.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Microalgas , Biofilmes , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Microalgas/metabolismo
15.
Environ Res ; 212(Pt A): 113126, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35341755

RESUMO

Biosurfactant is one of the emerging compounds in the industrial sector that behaves similarly with their synthetic counterparts, as they can reduce surface and interfacial tension between two fluids. Their unique properties also enable biosurfactant molecules to be able to clump together to form micelles that can capture targeted molecules within a solution. Biosurfactants are compared with synthetic surfactants on various applications for which the results shows that biosurfactants are fully capable of replacing synthetic surfactants in applications including enhanced oil recovery and wastewater treatment applications. Biosurfactants are able to be used in different applications as well since they are less toxic than synthetic surfactants. These applications include bioremediation on oil spills in the marine environment and bioremediation for contaminated soil and water, as well as a different approach on the pharmaceutical applications. The future of biosurfactants in the pharmaceutical industry and petroleum industry as well as challenges faced for implementing biosurfactants into large-scale applications are also discussed at the end of this review.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Indústria de Petróleo e Gás , Tensoativos
16.
J Antimicrob Chemother ; 76(8): 2029-2039, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33907816

RESUMO

BACKGROUND: Thiopeptides are a class of antibiotics that are active against Gram-positive bacteria and inhibit translation. They were considered inactive against Gram-negative bacteria due to their inability to cross the outer membrane. However, we discovered previously that a member of this class, thiostrepton (TS), has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. TS hijacks the pyoverdine siderophore receptors of P. aeruginosa to cross the outer membrane and synergizes with iron chelators. OBJECTIVES: To test other thiopeptides for antimicrobial activity against P. aeruginosa and determine their mechanism of uptake, action and spectrum of activity. METHODS: Eight thiopeptides were screened in chequerboard assays against a mutant of P. aeruginosa PA14 lacking both pyoverdine receptors. Thiopeptides that retain activity against a pyoverdine receptor-null mutant may use alternative siderophore receptors for entry. Susceptibility testing against siderophore receptor mutants was used to determine thiopeptide mechanism of uptake. RESULTS: The thiopeptides thiocillin (TC) and micrococcin (MC) use the ferrioxamine siderophore receptor (FoxA) for uptake and inhibit the growth of P. aeruginosa at low micromolar concentrations. The activity of TC required the TonB-ExbBD system used to energize siderophore uptake. TC acted through its canonical mechanism of action of translation inhibition. CONCLUSIONS: Multiple thiopeptides have antimicrobial activity against P. aeruginosa, countering the historical assumption that they cannot cross the outer membrane. These results demonstrate the potential for thiopeptides to act as antipseudomonal antibiotics.


Assuntos
Desferroxamina , Pseudomonas aeruginosa , Proteínas da Membrana Bacteriana Externa , Bacteriocinas , Desferroxamina/farmacologia , Compostos Férricos , Peptídeos , Sideróforos
17.
Langmuir ; 37(30): 9192-9201, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255525

RESUMO

The changes in the transport behavior of a microswimmer before and after cargo loading are crucial to understanding and control of the motion of a biohybrid microbot. In this work, we show the change in swimming behavior of biflagellated microalgae Chlamydomonas reinhardtii picking up a 4.5 µm polystyrene microbead upon collision. The microswimmer changed from linear forward motion into helical motion upon the attachment of the cargo and swam with a decreased swimming velocity. We revealed the helical motion of the microswimmer upon cargo loading due to suppression of flagella by image analysis of magnified time-lapse images of C. reinhardtii with one microbead attached at the anterior end (between the flagella). Furthered suppression on the flagellum imposed by the loading of the second cargo has led to increased oscillation per displacement traveled and decreased swimming velocity. Moreover, the microswimmer with a microbead attached at the posterior end swam with swimming velocity close to free swimming microalgae and did not exhibit helical swimming behavior. The experimental results and analysis showed that the loading location of the cargo has a great influence over the swimming behavior of the microswimmer. Furthermore, the work balance calculation and mathematical analysis based on Lighthill's model are well consistent with our experimental findings.


Assuntos
Chlamydomonas reinhardtii , Flagelos , Humanos , Movimento (Física) , Natação
18.
J Ultrasound Med ; 40(3): 569-581, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33410183

RESUMO

OBJECTIVES: To quantify the bias of shear wave speed (SWS) measurements between different commercial ultrasonic shear elasticity systems and a magnetic resonance elastography (MRE) system in elastic and viscoelastic phantoms. METHODS: Two elastic phantoms, representing healthy through fibrotic liver, were measured with 5 different ultrasound platforms, and 3 viscoelastic phantoms, representing healthy through fibrotic liver tissue, were measured with 12 different ultrasound platforms. Measurements were performed with different systems at different sites, at 3 focal depths, and with different appraisers. The SWS bias across the systems was quantified as a function of the system, site, focal depth, and appraiser. A single MRE research system was also used to characterize these phantoms using discrete frequencies from 60 to 500 Hz. RESULTS: The SWS from different systems had mean difference 95% confidence intervals of ±0.145 m/s (±9.6%) across both elastic phantoms and ± 0.340 m/s (±15.3%) across the viscoelastic phantoms. The focal depth and appraiser were less significant sources of SWS variability than the system and site. Magnetic resonance elastography best matched the ultrasonic SWS in the viscoelastic phantoms using a 140 Hz source but had a - 0.27 ± 0.027-m/s (-12.2% ± 1.2%) bias when using the clinically implemented 60-Hz vibration source. CONCLUSIONS: Shear wave speed reconstruction across different manufacturer systems is more consistent in elastic than viscoelastic phantoms, with a mean difference bias of < ±10% in all cases. Magnetic resonance elastographic measurements in the elastic and viscoelastic phantoms best match the ultrasound systems with a 140-Hz excitation but have a significant negative bias operating at 60 Hz. This study establishes a foundation for meaningful comparison of SWS measurements made with different platforms.


Assuntos
Técnicas de Imagem por Elasticidade , Biomarcadores , Elasticidade , Humanos , América do Norte , Imagens de Fantasmas
19.
Int J Phytoremediation ; 23(14): 1519-1524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33913777

RESUMO

One of the challenges of integrating phytoremediation into a waste treatment system is the sensitivity of plant species to fluctuations in environmental conditions and the difficulty in estimating subsequent changes to their rates of uptake. In this study, we examine a method using the exponential decay equation to approximate the median uptake rate (MUR) of nutrients for three aquatic macrophyte species, Salvinia molesta, Spirodela polyrhiza, and Lemna minor. These MUR values were then used to directly evaluate the phytoremediation performance between species and at varying levels of salinity stress. The results of this study indicate that an exponential decay relationship produced the most accurate models of the nutrient uptake profile for each species, with highest correlation values in 74.1% of tests for the three species at increasing salinity over a period of 14 d. S. polyrhiza and L. minor began to show significant reductions in nutrient uptake and growth at salinity concentration above 10 g/L. Using MUR, direct comparisons can be made between species in a time and mass-independent manner, allowing for the rapid assessment of phytoremediation performance under conditions of increasing salinity stress. Novelty statementIn this study, we propose the use of an exponential decay model and the use of median uptake rate (MUR) obtained from the model coefficients as a method for directly comparing species performance under different conditions. Subsequently, we show how the use of MUR values obtained from three species of aquatic macrophytes allows for the direct comparison of species performance under increasing salinity stress. The method proposed in this study would improve the ability for easy comparison between species performance under varying environmental conditions. Future works could further build on the parameters proposed in this study and optimize the performance of phytoremediation systems developed for nutrient-affected wastewater management. This study is especially beneficial to phytoremediation researchers and environmental engineers who are implementing or designing macrophyte phytoremediation systems.


Assuntos
Araceae , Poluentes Químicos da Água , Biodegradação Ambiental , Nutrientes , Salinidade , Águas Residuárias , Poluentes Químicos da Água/análise
20.
Artigo em Inglês | MEDLINE | ID: mdl-31907180

RESUMO

Pseudomonas aeruginosa is a multidrug-resistant nosocomial pathogen. We showed previously that thiostrepton (TS), a Gram-positive thiopeptide antibiotic, is imported via pyoverdine receptors and synergizes with iron chelator deferasirox (DSX) to inhibit the growth of P. aeruginosa and Acinetobacter baumannii clinical isolates. A small number of P. aeruginosa and A. baumannii isolates were resistant to the combination, prompting us to search for other compounds that could synergize with TS against those strains. From literature surveys, we selected 14 compounds reported to have iron-chelating activity, plus one iron analogue, and tested them for synergy with TS. Doxycycline (DOXY), ciclopirox olamine (CO), tropolone (TRO), clioquinol (CLI), and gallium nitrate (GN) synergized with TS. Individual compounds were bacteriostatic, but the combinations were bactericidal. Our spectrophotometric data and chrome azurol S agar assay confirmed that the chelators potentiate TS activity through iron sequestration rather than through their innate antimicrobial activities. A triple combination of TS plus DSX plus DOXY had the most potent activity against P. aeruginosa and A. baumannii isolates. One P. aeruginosa clinical isolate was resistant to the triple combination but susceptible to a triple combination containing higher concentrations of CLI, CO, or DOXY. All A. baumannii isolates were susceptible to the triple combinations. Our data reveal a diverse set of compounds with dual activity as antibacterial agents and TS adjuvants, allowing combinations to be tailored for resistant clinical isolates.


Assuntos
Antibacterianos/farmacologia , Ferro/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Ciclopirox/farmacologia , Clioquinol/farmacologia , Doxiciclina/farmacologia , Gálio/farmacologia , Deficiências de Ferro , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Tropolona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA