Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(4): 98, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016029

RESUMO

The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics. Among various available devices in aerosol delivery, dry powder inhalers (DPIs) are preferable for delivery of nanoparticles due to their simplicity of use, high portability, and superior long-term stability. Despite research efforts devoted to developing inhaled nanoparticle-based DPI formulations, no such formulations have been approved to date, implying a research gap between bench and bedside. This review aims to address this gap by highlighting important yet often overlooked issues during pre-clinical development. We start with an overview and update on formulation and particle engineering strategies for fabricating inhalable nanoparticle-based dry powder formulations. An important but neglected aspect in in vitro characterization methodologies for linking the powder performance with their bio-fate is then discussed. Finally, the major challenges and strategies in their clinical translation are highlighted. We anticipate that focused research onto the existing knowledge gaps presented in this review would accelerate clinical applications of inhalable nanoparticle-based dry powders from a far-fetched fantasy to a reality.


Assuntos
COVID-19 , Nanopartículas , Humanos , Pós , Administração por Inalação , Sistemas de Liberação de Medicamentos/métodos , Pesquisa Translacional Biomédica , Vacinas contra COVID-19 , Aerossóis e Gotículas Respiratórios , Inaladores de Pó Seco , Tamanho da Partícula
2.
Int J Pharm ; 653: 123877, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38342326

RESUMO

Conventional intravenous chemotherapy for lung cancer frequently results in inefficient drug penetration into primary lung tumors and severe systemic toxicities. This study reports the development of inhalable paclitaxel (PTX) nanoagglomerate dry powders (PTX-NADP) for enhanced pulmonary delivery of PTX chemotherapy to lung tumors using full factorial Design of Experiments. PTX nanoparticles were fabricated by flash nanoprecipitation with the aid of N-polyvinylpyrrolidone (PVP) and curcumin (CUR) as stabilizer and co-stabilizer respectively, and subsequently agglomerated into inhalable dry powders via co-spray drying with methylcellulose. The optimized PTX-NADP formulation exhibited acceptable aqueous redispersibility (redispersibility index = 1.17 ± 0.02) into âˆ¼ 150 nm nanoparticles and superb in vitro aerosol performance [mass median aerodynamic diameter (MMAD) = 1.69 ± 0.05 µm and fine particle fraction (FPF) of 70.89 ± 1.72 %] when dispersed from a Breezhaler® at 90 L/min. Notably, adequate aerosolization (MMAD < 3.5 µm and FPF > 40 %) of the optimized formulation was maintained when dispersed at reduced inspiratory flow rates of 30 - 60 L/min. Redispersed PTX nanoparticles from PTX-NADP demonstrated enhanced in vitro antitumor efficacy and cellular uptake in A549 lung adenocarcinoma cells without compromising tolerability of BEAS-2B normal lung epithelial cells towards PTX chemotherapy. These findings highlight the potential of inhaled PTX-NADP therapy to improve therapeutic outcomes for lung cancer patients with varying levels of pulmonary function impairment.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Paclitaxel , Pós , Administração por Inalação , NADP/uso terapêutico , Aerossóis e Gotículas Respiratórios , Tamanho da Partícula , Inaladores de Pó Seco
3.
Int J Pharm ; 653: 123896, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38346602

RESUMO

The therapeutic potential of pharmaceutical cocrystals in intranasal applications remains largely unexplored despite progressive advancements in cocrystal research. We present the application of spray freeze drying (SFD) in successful fabrication of a favipiravir-pyridinecarboxamide cocrystal nasal powder formulation for potential treatment of broad-spectrum antiviral infections. Preliminary screening via mechanochemistry revealed that favipiravir (FAV) can cocrystallize with isonicotinamide (INA), but not nicotinamide (NCT) and picolinamide (PIC) notwithstanding their structural similarity. The cocrystal formation was characterized by differential scanning calorimetry, Fourier-transform infrared spectroscopy, and unit cell determination through Rietveld refinement of powder X-ray analysis. FAV-INA crystalized in a monoclinic space group P21/c with a unit cell volume of 1223.54(3) Å3, accommodating one FAV molecule and one INA molecule in the asymmetric unit. The cocrystal was further reproduced as intranasal dry powders by SFD, of which the morphology, particle size, in vitro drug release, and nasal deposition were assessed. The non-porous flake shaped FAV-INA powders exhibited a mean particle size of 19.79 ± 2.61 µm, rendering its suitability for intranasal delivery. Compared with raw FAV, FAV-INA displayed a 3-fold higher cumulative fraction of drug permeated in Franz diffusion cells at 45 min (p = 0.001). Dose fraction of FAV-INA deposited in the nasal fraction of a customized 3D-printed nasal cast reached over 80 %, whereas the fine particle fraction remained below 6 % at a flow rate of 15 L/min, suggesting high nasal deposition whilst minimal lung deposition. FAV-INA was safe in RPMI 2650 nasal and SH-SY5Y neuroblastoma cells without any in vitro cytotoxicity observed. This study demonstrated that combining the merits of cocrystallization and particle engineering via SFD can propel the development of advanced dry powder formulations for intranasal drug delivery.


Assuntos
Amidas , Química Farmacêutica , Neuroblastoma , Pirazinas , Humanos , Química Farmacêutica/métodos , Pós/química , Liofilização/métodos , Tamanho da Partícula , Inaladores de Pó Seco , Administração por Inalação , Aerossóis
4.
Drug Deliv Transl Res ; 14(9): 2433-2443, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38231385

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has become a leading causative pathogen of nosocomial pneumonia with an alarming in-hospital mortality rate of 30%. Last resort antibiotic, vancomycin, has been increasingly used to treat MRSA infections, but the rapid emergence of vancomycin-resistant strains urges the development of alternative treatment strategies against MRSA-associated pneumonia. The bacteriolytic enzyme, lysostaphin, targeting the cell wall peptidoglycan of S. aureus, has been considered as a promising alternative for MRSA infections. Its proteinaceous nature is likely benefit from direct delivery to the lungs, but the challenges for successful pulmonary delivery of lysostaphin lying on a suitable inhalation device and a formulation with sufficient storage stability. In this study, the applicability of a vibrating mesh nebulizer (Aerogen Solo®) and a soft mist inhaler (Respimat®) was investigated. Both devices were capable of aerosolizing lysostaphin solution into inhalable droplets and caused minimum antibacterial activity loss. In addition, lysostaphin stabilized with phosphate-buffered saline and 0.1% Tween 80 was proved to have acceptable stability for at least 12 months when stored at 4 °C. These promising data encourage further clinical development of lysostaphin for management of MRSA-associated lung infections.


Assuntos
Antibacterianos , Estabilidade de Medicamentos , Lisostafina , Staphylococcus aureus Resistente à Meticilina , Lisostafina/administração & dosagem , Lisostafina/química , Administração por Inalação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Nebulizadores e Vaporizadores , Armazenamento de Medicamentos , Humanos , Pulmão/microbiologia , Pulmão/efeitos dos fármacos
5.
Int J Pharm ; 644: 123303, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579825

RESUMO

While inhalable nanoparticle-based dry powders have demonstrated promising potential as next-generation respiratory medicines, erratic particle redispersibility and poor manufacturing reproducibility remain major hurdles hindering their translation from bench to bedside. We developed a one-step continuous process for fabricating inhalable remdesivir (RDV) nanoagglomerate dry powder formulations by integrating flash nanoprecipitation and spray drying. The nanosuspension formulation was optimized using a three-factor Box-Behnken design with a z-average particle size of 233.3 ± 2.3 nm and < 20% size change within six hours. The optimized inhalable nanoagglomerate dry powder formulation produced by spray drying showed adequate aqueous redispersibility (Sf/Si = 1.20 ± 0.01) and in vitro aerosol performance (mass median aerodynamic diameter of 3.80 ± 0.58 µm and fine particle fraction of 39.85 ± 10.16%). In A549 cells, RDV nanoparticles redispersed from the inhalable nanoagglomerate powders displayed enhanced and accelerated RDV cell uptake and negligible cytotoxicity at therapeutic RDV concentrations. No statistically significant differences were observed in the critical quality attributes of the inhalable nanoagglomerate powders produced from the continuous manufacturing and standalone batch modes. This work demonstrates the feasibility of large-scale continuous manufacturing of inhalable nanoagglomerate dry powder formulations, which pave the way for their clinical translation.


Assuntos
Viroses , Humanos , Pós , Administração por Inalação , Reprodutibilidade dos Testes , Aerossóis , Tamanho da Partícula , Inaladores de Pó Seco
6.
J Pharm Sci ; 112(9): 2371-2384, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453526

RESUMO

Despite significant research progress in substantiating the therapeutic merits of nanomedicines and the emergence of sophisticated nanotechnologies, the translation of this knowledge into new therapeutic modalities has been sluggish, indicating the need for a more comprehensive understanding of how the unique physicochemical properties of nanoparticles affect their clinical applications. Particle size is a critical quality attribute that impacts the bio-fate of nanoparticles, yet precise knowledge of its effect remains elusive with discrepancies among literature reports. This review aims to address this scientific knowledge gap from a drug development perspective by highlighting potential inadequacies during the evaluation of particle size effects. We begin with a discussion on the major issues in particle size characterization along with the corresponding remedies. The influence of confounding factors on biological effects of particle size, including colloidal stability, polydispersity, and in vitro drug release, are addressed for establishing stronger in vitro-in vivo correlation. Particle size design and tailoring approaches for successful nanoparticulate drug delivery beyond parenteral administration are also illustrated. We believe a holistic understanding of the effect of particle size on bio-fate, combined with consistent nanoparticle manufacturing platforms and tailored characterization techniques, would expedite the translation of nanomedicines into clinical practice.


Assuntos
Nanomedicina , Nanopartículas , Nanomedicina/métodos , Tamanho da Partícula , Pesquisa Translacional Biomédica , Sistemas de Liberação de Medicamentos , Nanotecnologia , Nanopartículas/química
7.
Int J Pharm ; 640: 122983, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37121494

RESUMO

While cocrystal engineering is an emerging formulation strategy to overcome drug delivery challenges, its therapeutic potential in non-oral applications remains not thoroughly explored. We herein report for the first time the successful synthesis of a cocrystal for remdesivir (RDV), an antiviral drug with broad-spectrum activities against RNA viruses. The RDV cocrystal was prepared with salicylic acid (SA) via combined liquid-assisted grinding (LAG) and thermal annealing. Formation of RDV-SA was found to be a thermally activated process, where annealing at high temperature after grinding was a prerequisite to facilitate the cocrystal growth from an amorphous intermediate, rendering it elusive under ambient preparing conditions. Through powder X-ray analysis with Rietveld refinement, the three-dimensional molecular structure of RDV-SA was resolved. The thermally annealed RDV-SA produced by LAG crystalized in a non-centrosymmetric monoclinic space group P21 with a unit cell volume of 1826.53(17) Å3, accommodating one pair of RDV and SA molecules in the asymmetric unit. The cocrystal formation was also characterized by differential scanning calorimetry, solid-state nuclear magnetic resonance, and Fourier-transform infrared spectroscopy. RDV-SA was further developed as inhaled dry powders by spray drying for potential COVID-19 therapy. The optimized RDV-SA dry powders exhibited a mass median aerodynamic diameter of 4.33 ± 0.2 µm and fine particle fraction of 41.39 ± 4.25 %, indicating the suitability for pulmonary delivery. Compared with the raw RDV, RDV-SA displayed a 15.43-fold higher fraction of release in simulated lung fluid at 120 min (p = 0.0003). RDV-SA was safe in A549 cells without any in vitro cytotoxicity observed in the RDV concentration from 0.05 to 10 µM.


Assuntos
COVID-19 , Química Farmacêutica , Humanos , Química Farmacêutica/métodos , Administração por Inalação , Tratamento Farmacológico da COVID-19 , Pulmão , Tamanho da Partícula , Pós/química , Inaladores de Pó Seco
8.
Biomater Adv ; 140: 213074, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35970111

RESUMO

Whilst 10-200 nm polymeric nanoparticles hold enormous medical potential, successful clinical translation remains scarce. There is an inadequate understanding of how these nanoparticles could be fabricated with consistent particle architecture in this size range, as well as their corresponding biological performance. We seek to fill this important knowledge gap by employing Design of Experiment (DoE) to examine critical formulation and processing parameters of cholecalciferol (VitD3)-loaded nanoparticles by flash nanoprecipitation (FNP). Based on the regression analysis of the critical processing parameters, six VitD3 nanoparticle formulations with z-average particle sizes between 40 and 150 nm were successfully developed, possessing essentially the same particle shape and zeta potential. To evaluate the effect of particle size on the in vivo performance, not only VitD3 but also its active metabolites (25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3) were assayed in the biodistribution study. Results indicated that VitD3 nanoparticles with sizes ≤110 nm would achieve higher plasma retention. VitD3 nanoparticles with sizes of 40 nm and 150 nm were superior for lung deposition, while particle size had no major role in the brain uptake of VitD3 nanoparticles. The present study demonstrates the value of DoE for generating size-tunable nanoparticles with controlled particle properties in FNP and offers important insights into the particle size effect of nanoparticles <200 nm on their therapeutic potential.


Assuntos
Colecalciferol , Nanopartículas , Tamanho da Partícula , Polímeros , Distribuição Tecidual
9.
Int J Pharm ; 598: 120224, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486028

RESUMO

Ibuprofen (IBP), a common non-steroidal anti-inflammatory drug (NSAID) with a log P of 3.51, has been shown to possess potential benefit in the treatment of Alzheimer's disease. However, the bioavailability of IBP to the brain is poor, which can be linked to its extensive binding to plasma proteins in the blood. This study aimed to evaluate the nanoparticle production of IBP by flash nanoprecipitation (FNP) technology, and to determine whether the nanoparticles prepared by FNP could enhance the delivery of IBP into the brain. Polymeric IBP nanoparticles were prepared with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) diblock copolymer as stabilizer under optimized conditions using a four-stream multi-inlet vortex mixer (MIVM). The optimized nanoparticles displayed a mean particle size of around 50 nm, polydispersity index of around 0.2, drug loading of up to 30% and physical stability of up to 34 days. In-depth surface characterization using zeta potential measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) showed that the surfaces of these nanoparticles were covered with the hydrophilic PEG groups from the diblock copolymer. In vivo brain uptake study of the IBP nanoparticles indicated that the particles, when coated with polysorbate 80, displayed an enhanced brain uptake. However, the extent of brain uptake enhancement appeared limited, possibly due to a rapid release of IBP from the nanoparticles into the blood stream following intravenous administration.


Assuntos
Ibuprofeno , Nanopartículas , Encéfalo , Tamanho da Partícula , Polietilenoglicóis , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA