Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401420

RESUMO

In this study, a thermal conductivity of 0.22 W·m-1·K-1 was obtained for pristine epoxy (EP), and the impact of a hybrid filler composed of two-dimensional (2D) flake-like boron nitride (BN) and zero-dimensional (0D) spherical micro-sized aluminum oxide (Al2O3) on the thermal conductivity of epoxy resin was investigated. With 80 wt.% hybrid Al2O3-BN filler contents, the thermal conductivity of the EP composite reached 1.72 W·m-1·K-1, increasing approximately 7.8-fold with respect to the pure epoxy matrix. Furthermore, different important properties for the application were analyzed, such as Fourier-transform infrared (FTIR) spectra, viscosity, morphology, coefficient of thermal expansion (CTE), glass transition temperature (Tg), decomposition temperature (Td), dielectric properties, and thermal infrared images. The obtained thermal performance is suitable for specific electronic applications such as flip-chip underfill packaging.

2.
Langmuir ; 26(13): 10572-7, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20302288

RESUMO

Poly(N-isopropylacrylamide)-tethered nanosilicate platelets (NSP-PNiPAAm) have been synthesized by covalently bonding the polymer onto the surfaces of silicate platelets of nanometer dimension, and this class of nanohybrids has proved to be effective for dispersing water-insoluble conjugated polymers (CPs). Simple pulverization of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with NSP-PNiPAAm rendered the powder material dispersible in water, whereupon it displayed thermoresponsive properties at 37.5 degrees C and CP particle size variation between ca. 50 and 100 nm by SEM observation. The same dispersion had a maximum UV-vis absorption at 524 nm and PL emission at 605 nm. The PL emission was significantly higher at 4 degrees C than at 45 degrees C. Being coated as a film, it showed an orange emission under an ultraviolet lamp, consistent with the PL measurement. The water-borne process of dispersing the CP in aqueous media by the presence of NSP-PNiPAAm and followed by film formation to demonstrate a unique method of manipulating hydrophobic conjugated polymers in a facile manner.

3.
J Colloid Interface Sci ; 352(1): 81-6, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20817167

RESUMO

Self-assembled silver wires in micro-meter scale were obtained from aqueous silver nitrate solution in the presence of a comb-like copolymer as the sole organic component. The requisite copolymer was easily prepared by the grafting poly(oxyethylene)-monoamine (POE-amine) onto poly(styrene-co-maleic anhydride) (SMA). Upon storage at ambient temperature with exposure to daylight, the aqueous AgNO(3)/SMA-POE solution gradually underwent a color changed from transparent pale-yellow to dark-violet over a period of hours, and after several months a solid precipitate was deposited. The formation process was monitored by ultraviolet-visible spectrometer, particle size analysis, scanning electron microscope, and transmission electron microscope. Silver wires were hierarchically formed by progressive transformation from the initial appearance of silver nanoparticles (ca. 10nm in diameter), followed by the intermediate rectangles (0.6-1.0µm in width and 0.4µm in length) in solution and ultimately the precipitates in micro-scale of silver wires at 1.6-6.4µm in diameter and 100-370µm in length. The progressive formation of the precipitated silver wires was accelerated by the exposure of visible light as a photo-reducing energy source. The micron-scale wires have a silver content over 97.4wt.% and a sheet resistance of 5.5×10(1)Ω/square.


Assuntos
Maleatos/química , Nanopartículas Metálicas/química , Nanofios/química , Compostos Organometálicos/síntese química , Polietilenoglicóis/química , Poliestirenos/química , Prata/química , Luz , Compostos Organometálicos/química , Tamanho da Partícula , Nitrato de Prata/química , Soluções , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA