Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 288(51): 36398-408, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24194518

RESUMO

Cbx7 is one of five mammalian orthologs of the Drosophila Polycomb. Cbx7 recognizes methylated lysine residues on the histone H3 tail and contributes to gene silencing in the context of the Polycomb repressive complex 1 (PRC1). However, our knowledge of Cbx7 post-translational modifications remains limited. Through combined biochemical and mass spectrometry approaches, we report a novel phosphorylation site on mouse Cbx7 at residue Thr-118 (Cbx7T118ph), near the highly conserved Polycomb box. The generation of a site-specific antibody to Cbx7T118ph demonstrates that Cbx7 is phosphorylated via MAPK signaling. Furthermore, we find Cbx7T118 phosphorylation in murine mammary carcinoma cells, which can be blocked by MEK inhibitors. Upon EGF stimulation, Cbx7 interacts robustly with other members of PRC1. To test the role of Cbx7T118 phosphorylation in gene silencing, we employed a RAS-induced senescence model system. We demonstrate that Cbx7T118 phosphorylation moderately enhances repression of its target gene p16. In summary, we have identified and characterized a novel MAPK-mediated phosphorylation site on Cbx7 and propose that mitogen signaling to the chromatin template regulates PRC1 function.


Assuntos
Sistema de Sinalização das MAP Quinases , Complexo Repressor Polycomb 1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Senescência Celular , Cromatina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação , Complexo Repressor Polycomb 1/química , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Estrutura Terciária de Proteína , Ratos
2.
Oncogene ; 34(31): 4069-4077, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25328137

RESUMO

The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumors including glioblastomas. Despite NR2E1 regulating targets like p21(CIP1) or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that polycomb repressive complexes also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16(INK4a) and direct repression of p21(CIP1). In addition NR2E1 expression also counteracts oncogene-induced senescence. The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer.


Assuntos
Senescência Celular/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Células Cultivadas , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Células-Tronco Neurais/fisiologia , Receptores Nucleares Órfãos , Complexo Repressor Polycomb 1/genética , Regiões Promotoras Genéticas , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo
3.
PLoS One ; 9(7): e102968, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057768

RESUMO

A growing body of evidence suggests that Polycomb group (PcG) proteins, key regulators of lineage specific gene expression, also participate in the repair of DNA double-strand breaks (DSBs) but evidence for direct recruitment of PcG proteins at specific breaks remains limited. Here we explore the association of Polycomb repressive complex 1 (PRC1) components with DSBs generated by inducible expression of the AsiSI restriction enzyme in normal human fibroblasts. Based on immunofluorescent staining, the co-localization of PRC1 proteins with components of the DNA damage response (DDR) in these primary cells is unconvincing. Moreover, using chromatin immunoprecipitation and deep sequencing (ChIP-seq), which detects PRC1 proteins at common sites throughout the genome, we did not find evidence for recruitment of PRC1 components to AsiSI-induced DSBs. In contrast, the S2056 phosphorylated form of DNA-PKcs and other DDR proteins were detected at a subset of AsiSI sites that are predominantly at the 5' ends of transcriptionally active genes. Our data question the idea that PcG protein recruitment provides a link between DSB repairs and transcriptional repression.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Complexo Repressor Polycomb 1/genética , Cromatina/química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Complexo Repressor Polycomb 1/metabolismo , Cultura Primária de Células , Transgenes
4.
Genome Biol ; 15(2): R23, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24485159

RESUMO

BACKGROUND: Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. RESULTS: Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. CONCLUSIONS: The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind.


Assuntos
Complexo Repressor Polycomb 1/biossíntese , Proteínas do Grupo Polycomb/biossíntese , Ligação Proteica/genética , Linhagem da Célula/genética , Senescência Celular/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma Humano , Humanos , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/genética
5.
Curr Opin Cell Biol ; 25(6): 765-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23916530

RESUMO

Senescence represents a permanent exit from the cell cycle and its role in curtailing the proliferation of damaged and potentially oncogenic cells has relevance both as a front-line defense against cancer and as an underlying cause of aging. The retinoblastoma protein (RB) and p53 tumor suppressors are central to the process and the growth arrest is primarily implemented by the cyclin-dependent kinase (CDK) inhibitors, p16INK4a and p21CIP1. In contrast to terminal differentiation, senescence is a general response to a diverse range of cellular stresses and is typically accompanied by a characteristic set of phenotypic changes. Of particular note is a secretory program whose autocrine and paracrine effects can advertize the presence of senescent cells within a tissue and promote their clearance by the immune system. In this short review, we will highlight recent advances in understanding the relationship between senescence and aging and the distinction between senescence and terminal differentiation, from a cell cycle perspective.


Assuntos
Envelhecimento , Ciclo Celular , Senescência Celular , Envelhecimento/genética , Animais , Ciclo Celular/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA , Replicação do DNA/genética , Regulação para Baixo/genética , Fatores de Transcrição E2F/metabolismo , Epigênese Genética/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA