Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Biol Evol ; 41(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39189646

RESUMO

Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements. Given the importance of these functions, it is expected that genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions, purifying selection may have maintained the proportions of intrinsically disordered regions of these proteins. Together with the observed negative associations between the evolutionary rate of these genes and the genomic abundance of transposable elements, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of transposable elements may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.


Assuntos
Evolução Molecular , Heterocromatina , Heterocromatina/genética , Animais , Elementos de DNA Transponíveis , Drosophila/genética , Seleção Genética , Drosophila melanogaster/genética , Dosagem de Genes
2.
Genome Res ; 31(3): 380-396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33563718

RESUMO

The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex (D. simulans, D. mauritiana, and D. sechellia), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence-twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.


Assuntos
Drosophila simulans/classificação , Drosophila simulans/genética , Evolução Molecular , Genoma de Inseto/genética , Animais , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , DNA Satélite/genética , Drosophila melanogaster/genética , Feminino , Masculino
3.
PLoS Genet ; 17(7): e1009662, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228705

RESUMO

Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.


Assuntos
DNA Satélite/genética , Proteínas de Drosophila/genética , Proteínas Ativadoras de GTPase/genética , Espermatogênese/genética , Animais , Núcleo Celular/metabolismo , Cromatina/genética , Mapeamento Cromossômico , Segregação de Cromossomos , Cromossomos/genética , DNA Satélite/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Ativadoras de GTPase/metabolismo , Genótipo , Masculino , Meiose , Mutação , Fenótipo , Espermátides/metabolismo , Espermatozoides/metabolismo
4.
PLoS Biol ; 17(5): e3000241, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31086362

RESUMO

Centromeres are essential chromosomal regions that mediate kinetochore assembly and spindle attachments during cell division. Despite their functional conservation, centromeres are among the most rapidly evolving genomic regions and can shape karyotype evolution and speciation across taxa. Although significant progress has been made in identifying centromere-associated proteins, the highly repetitive centromeres of metazoans have been refractory to DNA sequencing and assembly, leaving large gaps in our understanding of their functional organization and evolution. Here, we identify the sequence composition and organization of the centromeres of Drosophila melanogaster by combining long-read sequencing, chromatin immunoprecipitation for the centromeric histone CENP-A, and high-resolution chromatin fiber imaging. Contrary to previous models that heralded satellite repeats as the major functional components, we demonstrate that functional centromeres form on islands of complex DNA sequences enriched in retroelements that are flanked by large arrays of satellite repeats. Each centromere displays distinct size and arrangement of its DNA elements but is similar in composition overall. We discover that a specific retroelement, G2/Jockey-3, is the most highly enriched sequence in CENP-A chromatin and is the only element shared among all centromeres. G2/Jockey-3 is also associated with CENP-A in the sister species D. simulans, revealing an unexpected conservation despite the reported turnover of centromeric satellite DNA. Our work reveals the DNA sequence identity of the active centromeres of a premier model organism and implicates retroelements as conserved features of centromeric DNA.


Assuntos
Centrômero/genética , Drosophila/genética , Retroelementos/genética , Animais , Proteína Centromérica A/genética , Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , DNA Satélite/genética , Drosophila/embriologia , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Genoma de Inseto , Sequências Repetidas Terminais/genética
5.
Diabetologia ; 62(5): 822-834, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30824970

RESUMO

AIMS/HYPOTHESIS: We previously reported that exposure to antibodies neutralising serpin B13, a protease inhibitor expressed in exocrine pancreatic ducts, promotes beta cell proliferation, underscoring the importance of a functional relationship between exocrine and endocrine pancreas. The aim of the present study was to identify the molecular events that link inhibition of serpin B13 to islet cell proliferation. METHODS: We used an in vitro culture system consisting of isolated pancreatic islets, an extract of pancreatic ductal epithelium and a monoclonal antibody (mAb) to serpin B13 or IgG isotype control. In vivo studies involved treatment of mice with these mAbs. RESULTS: The catalytic activity of cathepsin L (CatL), a cysteine protease target of serpin B13, was augmented in the pancreas of mice injected with serpin B13 mAb. Furthermore, the addition of serpin B13 mAb to the islets, together with the pancreatic ductal epithelium lysate, caused CatL-dependent cleavage of E-cadherin and concomitant upregulation of REG genes, ultimately leading to beta cell proliferation. Direct blockade of E-cadherin with mAb also markedly enhanced REG gene induction, while chemical inhibition of ß-catenin, a binding target of E-cadherin, prevented the serpin B13 mAb-induced upregulation of REG genes. CONCLUSIONS/INTERPRETATION: Our work implicates the CatL-E-cadherin-REG pathway in the regulation of islet cell proliferation in response to signals generated in exocrine pancreatic tissue and demonstrates that protease activity may promote adaptive changes in the islets. DATA AVAILABILITY: Microarray data that support the findings of this study have been deposited in Gene Expression Omnibus (GEO) with the accession no. GSE125151.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Catepsina L/metabolismo , Ilhotas Pancreáticas/metabolismo , Serpinas/metabolismo , Animais , Anticorpos Monoclonais , Proliferação de Células , Feminino , Expressão Gênica , Células HEK293 , Humanos , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Pâncreas Exócrino/metabolismo , Ductos Pancreáticos/citologia , Transdução de Sinais , alfa 1-Antitripsina/metabolismo
6.
Proc Biol Sci ; 286(1913): 20191430, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31640520

RESUMO

Meiotic drivers are selfish genetic elements that bias their transmission into gametes, often to the detriment of the rest of the genome. The resulting intragenomic conflicts triggered by meiotic drive create evolutionary arms races and shape genome evolution. The phenomenon of meiotic drive is widespread across taxa but is particularly prominent in the Drosophila genus. Recent studies in Drosophila have provided insights into the genetic origins of drivers and their molecular mechanisms. Here, we review the current literature on mechanisms of drive with an emphasis on sperm killers in Drosophila species. In these systems, meiotic drivers often evolve from gene duplications and targets are generally linked to heterochromatin. While dense in repetitive elements and difficult to study using traditional genetic and genomic approaches, recent work in Drosophila has made progress on the heterochromatic compartment of the genome. Although we still understand little about precise drive mechanisms, studies of male drive systems are converging on common themes such as heterochromatin regulation, small RNA pathways, and nuclear transport pathways. Meiotic drive systems are therefore promising models for discovering fundamental features of gametogenesis.


Assuntos
Drosophila/fisiologia , Meiose/fisiologia , Animais , Sequências Repetitivas de Ácido Nucleico , Seleção Genética
8.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38496614

RESUMO

Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements (TEs). Given the importance of these functions, it is expected that the genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions (IDRs), purifying selection may have maintained the proportions of IDRs of these proteins. Together with the observed negative associations between evolutionary rates of these genes and genomic TE abundance, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of TEs may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.

9.
Elife ; 122023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763410

RESUMO

Many animal species employ sperm nuclear basic proteins (SNBPs) or protamines to package sperm genomes tightly. SNBPs vary across animal lineages and evolve rapidly in mammals. We used a phylogenomic approach to investigate SNBP diversification in Drosophila species. We found that most SNBP genes in Drosophila melanogaster evolve under positive selection except for genes essential for male fertility. Unexpectedly, evolutionarily young SNBP genes are more likely to be critical for fertility than ancient, conserved SNBP genes. For example, CG30056 is dispensable for male fertility despite being one of three SNBP genes universally retained in Drosophila species. We found 19 independent SNBP gene amplification events that occurred preferentially on sex chromosomes. Conversely, the montium group of Drosophila species lost otherwise-conserved SNBP genes, coincident with an X-Y chromosomal fusion. Furthermore, SNBP genes that became linked to sex chromosomes via chromosomal fusions were more likely to degenerate or relocate back to autosomes. We hypothesize that autosomal SNBP genes suppress meiotic drive, whereas sex-chromosomal SNBP expansions lead to meiotic drive. X-Y fusions in the montium group render autosomal SNBPs dispensable by making X-versus-Y meiotic drive obsolete or costly. Thus, genetic conflicts between sex chromosomes may drive SNBP rapid evolution during spermatogenesis in Drosophila species.


In sperm, DNA is packaged more tightly than in other cells thanks to small proteins called 'sperm nuclear basic proteins' (SNBPs), also called protamines in mammals. SNBPs are important for sperm to develop properly and correctly perform their role during fertilization. Although the evolution of SNBPs has been studied in mammals, these proteins have not been as thoroughly examined in invertebrates. Chang et al. took advantage of the availability of high-quality sequences for the genomes of 78 species of Drosophila flies to investigate the evolution of the genes that code for SNBPs in these flies. The results showed that, just like in mammals, in Drosophila the protein sequences of SNBPs evolve rapidly. However, unlike mammals, Chang et al. also found that Drosophila species frequently gained and lost genes coding for SNBPs. Interestingly, the 'older' genes (genes that appeared earlier in evolution) that code for SNBPs are not essential for reproduction in the fruit fly Drosophila melanogaster. This is an unexpected finding because older genes usually have essential roles for survival and reproduction, which require them to be passed on to the next generation and remain in the genome. In contrast, younger SNBP genes that had appeared more recently and were not shared between different species of Drosophila were often essential for fertility. These results, combined with other observations about where SNBP genes are located in the genome, led Chang et al. to hypothesize that SNBPs present in sex chromosomes act as 'meiotic drivers' while those on other chromosomes (known as autosomes) suppress meiotic drive. In other words, SNBP genes present in the sex chromosomes may be responsible for killing sister sperm cells that do not carry those genes, while SNBP genes that are not located on sex chromosomes may suppress this activity. This is of particular interest because it indicates that SNBPs are involved in genetic conflicts between the two sex chromosomes: sperm that carry SNBPs on the X chromosome may kill sperm with a Y chromosome, and vice versa. The results of Chang et al. shed light on the mysterious evolution of SNBPs in Drosophila flies. Although previous hypotheses regarding the rapid evolution of SNBPs evolution have focused on their role in genome packaging, this new analysis suggests that much of the evolutionary change is likely driven by genetic conflicts between sex chromosomes.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Masculino , Drosophila/genética , Drosophila melanogaster/genética , Sêmen , Espermatozoides/metabolismo , Cromossomos Sexuais/genética , Proteínas do Espermatozoide , Evolução Molecular , Mamíferos/genética
10.
Science ; 382(6671): 725-731, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943933

RESUMO

The global replacement of histones with protamines in sperm chromatin is widespread in animals, including insects, but its actual function remains enigmatic. We show that in the Drosophila paternal effect mutant paternal loss (pal), sperm chromatin retains germline histones H3 and H4 genome wide without impairing sperm viability. However, after fertilization, pal sperm chromosomes are targeted by the egg chromosomal passenger complex and engage into a catastrophic premature division in synchrony with female meiosis II. We show that pal encodes a rapidly evolving transition protein specifically required for the eviction of (H3-H4)2 tetramers from spermatid DNA after the removal of H2A-H2B dimers. Our study thus reveals an unsuspected role of histone eviction from insect sperm chromatin: safeguarding the integrity of the male pronucleus during female meiosis.


Assuntos
Amidina-Liases , Cromatina , Proteínas de Drosophila , Drosophila melanogaster , Fertilização , Histonas , Herança Paterna , Espermatozoides , Animais , Feminino , Masculino , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Espermatozoides/metabolismo , Amidina-Liases/genética , Amidina-Liases/metabolismo , Empacotamento do DNA
11.
Elife ; 112022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989337

RESUMO

Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long-read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.


Assuntos
Cromossomos de Insetos/genética , Drosophila/genética , Evolução Molecular , Seleção Genética , Cromossomo Y/genética , Animais , Drosophila melanogaster/genética , Drosophila simulans/genética , Especificidade da Espécie
12.
Elife ; 112022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486424

RESUMO

Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive-the driver and the target-linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversions on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Inversão Cromossômica , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Carga Genética , Masculino , Meiose , Recombinação Genética , Seleção Genética
13.
Genetics ; 211(1): 333-348, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420487

RESUMO

Heterochromatic regions of the genome are repeat-rich and poor in protein coding genes, and are therefore underrepresented in even the best genome assemblies. One of the most difficult regions of the genome to assemble are sex-limited chromosomes. The Drosophila melanogaster Y chromosome is entirely heterochromatic, yet has wide-ranging effects on male fertility, fitness, and genome-wide gene expression. The genetic basis of this phenotypic variation is difficult to study, in part because we do not know the detailed organization of the Y chromosome. To study Y chromosome organization in D. melanogaster, we develop an assembly strategy involving the in silico enrichment of heterochromatic long single-molecule reads and use these reads to create targeted de novo assemblies of heterochromatic sequences. We assigned contigs to the Y chromosome using Illumina reads to identify male-specific sequences. Our pipeline extends the D. melanogaster reference genome by 11.9 Mb, closes 43.8% of the gaps, and improves overall contiguity. The addition of 10.6 MB of Y-linked sequence permitted us to study the organization of repeats and genes along the Y chromosome. We detected a high rate of duplication to the pericentric regions of the Y chromosome from other regions in the genome. Most of these duplicated genes exist in multiple copies. We detail the evolutionary history of one sex-linked gene family, crystal-Stellate While the Y chromosome does not undergo crossing over, we observed high gene conversion rates within and between members of the crystal-Stellate gene family, Su(Ste), and PCKR, compared to genome-wide estimates. Our results suggest that gene conversion and gene duplication play an important role in the evolution of Y-linked genes.


Assuntos
Drosophila melanogaster/genética , Heterocromatina/genética , Cromossomo Y/genética , Animais , Mapeamento de Sequências Contíguas/métodos , Feminino , Conversão Gênica , Duplicação Gênica , Masculino
14.
Elife ; 72018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30324905

RESUMO

Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.


Assuntos
Evolução Molecular , Vaga-Lumes/genética , Luciferases de Vaga-Lume/genética , Proteínas Luminescentes/genética , Animais , Besouros/enzimologia , Besouros/genética , Vaga-Lumes/enzimologia , Genoma de Inseto/genética , Anotação de Sequência Molecular
15.
Evolution ; 71(5): 1285-1296, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28322435

RESUMO

Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome-Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10-15 Mya. We used single molecule real-time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y-to-dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ∼78 Kb and is not repeat-dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y-to-dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y-to-dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y-to-dot translocation.


Assuntos
Drosophila/genética , Cromossomo Y , Animais , Drosophila melanogaster , Genoma , Genômica , Cromossomo X
16.
Curr Biol ; 27(13): 2007-2013.e8, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28648823

RESUMO

The classic model for the evolution of novel gene function is through gene duplication followed by evolution of a new function by one of the copies (neofunctionalization) [1, 2]. However, other modes have also been found, such as novel genes arising from non-coding DNA, chimeric fusions, and lateral gene transfers from other organisms [3-7]. Here we use the rapid turnover of venom genes in parasitoid wasps to study how new gene functions evolve. In contrast to the classic gene duplication model, we find that a common mode of acquisition of new venom genes in parasitoid wasps is co-option of single-copy genes from non-venom progenitors. Transcriptome and proteome sequencing reveal that recruitment and loss of venom genes occur primarily by rapid cis-regulatory expression evolution in the venom gland. Loss of venom genes is primarily due to downregulation of expression in the gland rather than gene death through coding sequence degradation. While the majority of venom genes have specialized expression in the venom gland, recent losses of venom function occur primarily among genes that show broader expression in development, suggesting that they can more readily switch functional roles. We propose that co-option of single-copy genes may be a common but relatively understudied mechanism of evolution for new gene functions, particularly under conditions of rapid evolutionary change.


Assuntos
Evolução Molecular , Expressão Gênica , Elementos Reguladores de Transcrição/genética , Venenos de Vespas/genética , Vespas/genética , Animais , Proteínas de Insetos/genética , Proteoma , Transcriptoma
17.
PLoS One ; 9(11): e113275, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415200

RESUMO

Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species' range, consistent with models of geographical parthenogenesis.


Assuntos
Drosophila/genética , Variação Genética , Partenogênese/genética , Comportamento Sexual Animal , Animais , Diploide , Drosophila/fisiologia , Evolução Molecular , Feminino , Fertilidade/genética , Aptidão Genética , Genótipo , Masculino , Fenótipo , Reprodução/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA