RESUMO
BACKGROUND: Exosome (EXOs) are rapidly being identified as key mediators of cell-to-cell communication. They convey biologically active molecules to target cells, serve important roles in a range of physiological and pathological processes, and have enormous potential as novel therapeutic strategies. METHODS: Preclinical research published between 2019 and 2023 provided the study's data searched on different medline search engine, and clinicaltrials.gov was searched for clinical data. These papers were chosen because they are relevant to the research of mesenchymal stem cell-derived exosomes (MSC-EXOs). Thematic synthesis and meta-analysis were used to perform the meta-analysis of diabetic wound healing. RESULTS: For data extraction, a total of 18 preclinical and 4 clinical trials were selected. Preclinical investigations involving EXOs across various animal wound healing models showed promising potential for treatment. Specifically, following EXO treatment, there was a notable correlation with wound closure rates, with a pooled proportion of 46 % (95 % CI: 0.34; 0.59) and τ2 of 0.0593 after 3 ± 2 days, 54 % (95 % CI: 0.43; 0.65) and τ2 of 0.0465 after 7 ± 2 days, and 69 % (95 % CI: 0.62; 0.76) and τ2 of 0.0221 after 14 ± 2 days, with an egger's test p-value of <0.01. Further investigation into heterogeneity was conducted through subgroup analysis based on the source of EXO and the animal model utilized in the study. CONCLUSIONS: EXOs are proving to be viable platforms for the treatment of a wide range of disorders in clinical trials. MSC-EXOs exhibited significant diabetic wound healing capabilities across diverse outcomes including wound closure, increase angiogenesis, immunomodulatory ability and skin regeneration with its typical structure and functions.
Assuntos
Exossomos , Células-Tronco Mesenquimais , Cicatrização , Exossomos/metabolismo , Humanos , Animais , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus/terapia , Complicações do Diabetes/terapiaRESUMO
BACKGROUND: Antimicrobial resistance (AMR) is a critical global issue that poses significant threats to human health, animal welfare, and the environment. With the increasing emergence of resistant microorganisms, the effectiveness of current antimicrobial medicines against common infections is diminishing. This study aims to conduct a competitive meta-analysis of surveillance data on resistant microorganisms and their antimicrobial resistance patterns in two countries, Egypt and the United Kingdom (UK). METHODS: Data for this study were obtained from published reports spanning the period from 2013 to 2022. In Egypt and the UK, a total of 9,751 and 10,602 food samples were analyzed, respectively. Among these samples, 3,205 (32.87%) in Egypt and 4,447 (41.94%) in the UK were found to contain AMR bacteria. RESULTS: In Egypt, the predominant resistance was observed against ß-lactam and aminoglycosides, while in the United Kingdom, most isolates exhibited resistance to tetracycline and ß-lactam. The findings from the analysis underscore the increasing prevalence of AMR in certain microorganisms, raising concerns about the development of multidrug resistance. CONCLUSION: This meta-analysis sheds light on the escalating AMR problem associated with certain microorganisms that pose a higher risk of multidrug resistance development. The significance of implementing One Health AMR surveillance is emphasized to bridge knowledge gaps and facilitate accurate AMR risk assessments, ensuring consumer safety. Urgent actions are needed on a global scale to combat AMR and preserve the effectiveness of antimicrobial treatments for the well-being of all living beings.
Assuntos
Anti-Infecciosos , Saúde Única , Animais , Humanos , Antibacterianos/uso terapêutico , beta-Lactamas , Farmacorresistência Bacteriana , Egito , Reino UnidoRESUMO
The totiviridae family contains viruses with double-stranded RNA genomes of 4.6-7.0 kpb, which encode a capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), and they are approximately 40 nm in diameter with icosahedral symmetry. Totiviruses were first isolated from mosquitoes collected in Shaanxi Province (China). Here, we report a new Aedes aegypti Totivirus (AaTV) identified in mosquitoes from the Amazon rainforest. Mosquitoes (Diptera: Culicidae) were collected from a forest reserve belonging to the Amazon forest in the city of Macapá, Amapá state, Northern Brazil. A viral sequence with a 5748 nucleotide length that was nearly identical to Aedes aegypti Totivirus (AaTV), here named Aedes aegypti Totivirus BR59AP, was detected. A detailed molecular analysis was performed and shows that AaTV-BR59AP is highly related to the AaTV strain from the Caribbean region. We emphasize the importance of the characterization of new viruses in mosquitoes to deepen our understanding of viral diversity in insects and their potential role in disease.
Assuntos
Aedes , Totiviridae , Totivirus , Vírus , Animais , Totivirus/genética , Brasil , Totiviridae/genéticaRESUMO
Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.
Assuntos
Nanocompostos , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Micelas , Nanopartículas/química , Neoplasias/tratamento farmacológico , Portadores de Fármacos/químicaRESUMO
The use of F. religiosa might be beneficial in inflammatory illnesses and can be used for a variety of health conditions. In this article, we studied the identification of antioxidants using (DPPH) 2,2-Diphenyl-1-picrylhydrazylradical scavenging activity in Ficus religiosa, as F. religiosa is an important herbal plant, and every part of it has various medicinal properties such as antibacterial properties that can be used by the researchers in the development and design of various new drugs. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) is a popular, quick, easy, and affordable approach for the measurement of antioxidant properties that includes the use of the free radicals used for assessing the potential of substances to serve as hydrogen providers or free-radical scavengers (FRS). The technique of DPPH testing is associated with the elimination of DPPH, which would be a stabilized free radical. The free-radical DPPH interacts with an odd electron to yield a strong absorbance at 517 nm, i.e., a purple hue. An FRS antioxidant, for example, reacts to DPPH to form DPPHH, which has a lower absorbance than DPPH because of the lower amount of hydrogen. It is radical in comparison to the DPPH-H form, because it causes decolorization, or a yellow hue, as the number of electrons absorbed increases. Decolorization affects the lowering capacity significantly. As soon as the DPPH solutions are combined with the hydrogen atom source, the lower state of diphenylpicrylhydrazine is formed, shedding its violet color. To explain the processes behind the DPPH tests, as well as their applicability to Ficus religiosa (F. religiosa) in the manufacture of metal oxide nanoparticles, in particular MgO, and their influence on antioxidants, a specimen from the test was chosen for further study. According to our findings, F. religiosa has antioxidant qualities and may be useful in the treatment of disorders caused by free radicals.
Assuntos
Compostos de Bifenilo/antagonistas & inibidores , Ficus/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Picratos/antagonistas & inibidores , Carboidratos/química , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Proteínas de Plantas/química , Açúcares/químicaRESUMO
Infectious animal diseases caused by pathogenic microorganisms such as bacteria and viruses threaten the health and well-being of wildlife, livestock, and human populations, limit productivity and increase significantly economic losses to each sector. The pathogen detection is an important step for the diagnostics, successful treatment of animal infection diseases and control management in farms and field conditions. Current techniques employed to diagnose pathogens in livestock and poultry include classical plate-based methods and conventional biochemical methods as enzyme-linked immunosorbent assays (ELISA). These methods are time-consuming and frequently incapable to distinguish between low and highly pathogenic strains. Molecular techniques such as polymerase chain reaction (PCR) and real time PCR (RT-PCR) have also been proposed to be used to diagnose and identify relevant infectious disease in animals. However these DNA-based methodologies need isolated genetic materials and sophisticated instruments, being not suitable for in field analysis. Consequently, there is strong interest for developing new swift point-of-care biosensing systems for early detection of animal diseases with high sensitivity and specificity. In this review, we provide an overview of the innovative biosensing systems that can be applied for livestock pathogen detection. Different sensing strategies based on DNA receptors, glycan, aptamers and antibodies are presented. Besides devices still at development level some are validated according to standards of the World Organization for Animal Health and are commercially available. Especially, paper-based platforms proposed as an affordable, rapid and easy to perform sensing systems for implementation in field condition are included in this review.
Assuntos
Técnicas Biossensoriais/veterinária , Influenza Aviária/diagnóstico , Gado/microbiologia , Gado/virologia , Doenças das Aves Domésticas/diagnóstico , Animais , Técnicas Biossensoriais/métodos , Bluetongue/diagnóstico , Complexo Respiratório Bovino/diagnóstico , Infecções por Campylobacter/diagnóstico , Infecções por Campylobacter/veterinária , Bovinos , Galinhas/microbiologia , Galinhas/virologia , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/veterinária , Coccidiose/diagnóstico , Coccidiose/virologia , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/veterinária , Feminino , Febre Aftosa/diagnóstico , Mastite Bovina/diagnóstico , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/veterinária , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Salmonelose Animal/diagnósticoRESUMO
Dengue virus (DENV) causes disease globally, resulting in an estimated 25 to 100 million new infections per year. No effective DENV vaccine is available, and the current treatment is only supportive. Thus, there is an urgent need to develop therapeutic agents to cure this epidemic disease. In the present study, we identified a potential small-molecule inhibitor, BP13944, via high-throughput screening (HTS) of 60,000 compounds using a stable cell line harboring an efficient luciferase replicon of DENV serotype 2 (DENV-2). BP13944 reduced the expression of the DENV replicon reporter in cells, showing a 50% effective concentration (EC50) of 1.03 ± 0.09 µM. Without detectable cytotoxicity, the compound inhibited replication or viral RNA synthesis in all four serotypes of DENV but not in Japanese encephalitis virus (JEV). Sequencing analyses of several individual clones derived from BP13944-resistant RNAs purified from cells harboring the DENV-2 replicon revealed a consensus amino acid substitution (E66G) in the region of the NS3 protease domain. Introduction of E66G into the DENV replicon, an infectious DENV cDNA clone, and recombinant NS2B/NS3 protease constructs conferred 15.2-, 17.2-, and 3.1-fold resistance to BP13944, respectively. Our results identify an effective small-molecule inhibitor, BP13944, which likely targets the DENV NS3 protease. BP13944 could be considered part of a more effective treatment regime for inhibiting DENV in the future.
Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Replicon/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Cricetinae , Vírus da Dengue/enzimologia , Farmacorresistência Viral , Serina Endopeptidases/metabolismo , Bibliotecas de Moléculas PequenasRESUMO
Despite tremendous efforts to improve the methodology for constructing flavivirus infectious cDNAs, the manipulation of flavivirus cDNAs remains a difficult task in bacteria. Here, we successfully propagated DNA-launched type 2 dengue virus (DENV2) and Japanese encephalitis virus (JEV) infectious cDNAs by introducing seven repeats of the tetracycline-response element (7×TRE) and a minimal cytomegalovirus (CMVmin) promoter upstream of the viral genome. Insertion of the 7×TRE-CMVmin sequence upstream of the DENV2 or JEV genome decreased the cryptic E. coli promoter (ECP) activity of the viral genome in bacteria, as measured using fusion constructs containing DENV2 or JEV segments and the reporter gene Renilla luciferase in an empty vector. The growth kinetics of recombinant viruses derived from DNA-launched DENV2 and JEV infectious cDNAs were similar to those of parental viruses. Similarly, RNA-launched DENV2 infectious cDNAs were generated by inserting 7×TRE-CMVmin, five repeats of the GAL4 upstream activating sequence, or five repeats of BamHI linkers upstream of the DENV2 genome. All three tandem repeat sequences decreased the ECP activity of the DENV2 genome in bacteria. Notably, 7×TRE-CMVmin stabilized RNA-launched JEV infectious cDNAs and reduced the ECP activity of the JEV genome in bacteria. The growth kinetics of recombinant viruses derived from RNA-launched DENV2 and JEV infectious cDNAs displayed patterns similar to those of the parental viruses. These results support a novel methodology for constructing flavivirus infectious cDNAs, which will facilitate research in virology, viral pathogenesis and vaccine development of flaviviruses and other RNA viruses.
Assuntos
Replicação do DNA , DNA Complementar/genética , DNA Viral/genética , Vírus da Dengue/genética , Vírus da Encefalite Japonesa (Subgrupo)/genética , Escherichia coli/virologia , Sequências de Repetição em Tandem , Animais , Linhagem Celular , Cricetinae , Vírus da Dengue/fisiologia , Vírus da Encefalite Japonesa (Subgrupo)/fisiologia , Escherichia coli/genética , Replicação ViralRESUMO
Background: Animal-assisted therapy, also known as pet therapy, is a therapeutic intervention that involves animals to enhance the well-being of individuals across various populations and settings. Objective: This systematic study aims to assess the outcomes of animal-assisted therapy interventions and explore the associated policies. Methods: A total of 16 papers published between 2015 and 2023 were selected for analysis. These papers were chosen based on their relevance to the research topic of animal-assisted therapy and their availability in scholarly databases. Thematic synthesis and meta-analysis were used to synthesize the qualitative and quantitative data extracted from the selected papers. Results: The analysis included 16 studies that met the inclusion criteria and were deemed to be of moderate or higher quality. Among these studies, 4 demonstrated positive results for therapeutic mediation and one for supportive mediation in psychiatric disorders. Additionally, all studies showed positive outcomes for depression and neurological disorders. Regarding stress and anxiety, 3 studies indicated supportive mediation, while 2 studies showed activating mediation. Conclusions: The overall assessment of animal-assisted therapy shows promise as an effective intervention in promoting well-being among diverse populations. Further research and the establishment of standardized outcome assessment measures and comprehensive policies are essential for advancing the field and maximizing the benefits of animal-assisted therapy.
RESUMO
Probiotics have gained a significant attention as a promising way to improve gut health and overall well-being. The increasing recognition of the potential health advantages associated with functional food products, leading to a specific emphasis on co-encapsulating probiotic bacteria and bioactive compounds within a unified matrix. To further explore this concept, a meta-analysis was performed to assess the effects of probiotics encapsulated in nanoparticles. A comprehensive meta-analysis was conducted, encompassing 10 papers published from 2017 to 2022, focusing on the encapsulation of probiotics within nanoparticles and their viability in various gastrointestinal conditions. The selection of these papers was based on their direct relevance to the research topic. Random-effect models were used to aggregate study-specific risk estimates. In the majority of studies, it was observed that nano-encapsulated nanoparticles showed improved viability over time compared to their free state counterparts. At various time intervals, the odds ratios (OR) with 95% confidence intervals (CI) were estimated using fixed and random effect models. At 0 min, the OR (95%CI) was 2.79 (2.79; 2.80) and 2.38 (2.14; 2.64) for. At 30 and 60 min observation was at similar rate of 2.23 (2.23; 2.24) and 2.05 (1.73; 2.43). However, at 90 min it was 1.39 (1.39; 1.39) and 1.66 (1.29; 2.14) and at 120 min 2.41 (2.41; 2.42) and 2.03 (1.63; 2.52). Overall evaluation of encapsulation revealed an improvement in probiotic bacterial viability in simulated the gastrointestinal environments.
Assuntos
Nanopartículas , Probióticos , Alimento Funcional , Viabilidade Microbiana , Razão de ChancesRESUMO
Globally increasing antibiotic resistance has been linked to the extensive use of antibiotics in medical, veterinary, and agricultural Practices. This study aims to investigate the correlations of antimicrobial-resistant of various pathogens in three compartments: humans, animals and the environment in India and Germany. A systematic search was carried out in Medline via PubMed, Google Scholar, and science direct, including studies published in 2022. Out of 532 papers, 24 were considered for meta-analysis. Our findings reveals that in India, ß-lactam is highly resistant in animals. Quinolone, on the other hand, was highly resistant in humans. In the environmental sectors, aminoglycosides and ß-lactams is resistant. While in Germany, ß-lactam resistance is high across all three sectors. However, E. coli was the most frequent and resistant pathogen in both countries, with significant resistance to ß-lactams and cephalosporins across all compartments. These results underscore the critical need for monitoring antibiotic resistance patterns and developing targeted antibiotic regimens. A One Health-based intervention strategy is essential to mitigate the spread of AMR and improve health outcomes globally.
RESUMO
Scrub typhus is one of the most neglected tropical diseases, a leading cause of acute undifferentiated febrile illness in areas of the 'tsutsugamushi triangle', diagnosed frequently in South Asian countries. The bacteria Orientia tsutsugamushi is the causative agent of the disease, which enters the human body through the bite of trombiculid mites (also known as chiggers) of the genus Leptotrombidium deliense. Diagnosis of the disease is challenging, as its early symptoms mimic other febrile illnesses like dengue, influenza and corona viruses. Lack of rapid, reliable and cost-effective diagnostic methods further complicates the identification process. Northeast India, a mountainous region with a predominantly rural tribal population, has witnessed a resurgence of scrub typhus cases in recent years. Various ecological factors, including rodent populations, habitat characteristics and climatic conditions, influence its prevalence. Entomological investigations have confirmed the abundance of vector mites, highlighting the importance of understanding their distribution and the probability of transmission of scrub typhus in the region. Proper diagnosis, awareness campaigns and behavioural interventions are essential for controlling scrub typhus outbreaks and reducing its impact on public health in Northeast India. Further research and community-based studies are necessary to accurately assess the disease burden and implement effective prevention strategies.
Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Trombiculidae , Animais , Humanos , Tifo por Ácaros/diagnóstico , Tifo por Ácaros/epidemiologia , Tifo por Ácaros/microbiologia , Trombiculidae/microbiologia , Reservatórios de Doenças , Índia/epidemiologiaRESUMO
AIMS: Leishmaniasis is a deadly tropical disease that is neglected in many countries. World Health Organization, along with a few other countries, has been working together to protect against these parasites. Many novel drugs from the past few years have been discovered and subjected against leishmaniasis, which have been effective but they are quite expensive for lower-class people. Some drugs showed no effect on the patients, and the longer use of these medicines has made resistance against these deadly parasites. Researchers have been working for better medication by using natural products from medicinal plants (oils, secondary metabolites, plant extracts) and other alternatives to find active compounds as an alternative to the current synthetic drugs. MATERIALS AND METHODS: To find more potential natural products to treat Leishmania spp, a study has been conducted and reported many plant metabolites and other natural alternatives from plants and their extracts. Selected research papers with few term words such as natural products, plant metabolites, Leishmaniasis, in vivo, in vitro, and treatment against leishmaniasis; in the Google Scholar, PubMed, and Science Direct databases with selected research papers published between 2015 and 2021 have been chosen for further analysis has been included in this report which has examined either in vivo or in vitro analysis. RESULTS: This paper reported more than 20 novel natural compounds in 20 research papers that have been identified which report a leishmanicidal activity and shows an action against promastigote, axenic, and intracellular amastigote forms. CONCLUSION: Medicinal plants, along with a few plant parts and extracts, have been reported as a possible novel anti-leishmanial medication. These medicinal plants are considered nontoxic to Host cells. Leishmaniasis treatments will draw on the isolated compounds as a source further and these compounds compete with those already offered in clinics.
Assuntos
Antiprotozoários , Produtos Biológicos , Leishmania , Leishmaniose , Plantas Medicinais , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose/tratamento farmacológico , Animais , Plantas Medicinais/química , Leishmania/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêuticoRESUMO
Breast cancer (BC) remains a leading cause of morbidity and mortality among women worldwide, with triple-negative breast cancer (TNBC) posing significant treatment challenges due to its aggressive phenotype and resistance to conventional therapies. Recent advancements in nanocarrier technology offer promising solutions for enhancing drug delivery, improving bioavailability, and increasing drug accumulation at tumor sites through targeted approaches. This review delves into the latest innovations in BC detection and treatment, highlighting the role of nanocarriers like polymeric micelles, liposomes, and magnetic nanoparticles in overcoming the limitations of traditional therapies. Additionally, the manuscript discusses the integration of cutting-edge diagnostic tools, such as multiplex PCR-Nested Next-Generation Sequencing (mPCR-NGS) and blood-based biomarkers, which are revolutionizing early detection and molecular profiling of BC. The convergence of these technologies not only enhances therapeutic outcomes but also paves the way for personalized medicine in BC management. This comprehensive review underscores the potential of nanocarriers in transforming BC treatment and emphasizes the critical importance of early detection in improving patient prognosis.
RESUMO
OBJECTIVE: Enterovirus 71-induced brainstem encephalitis with pulmonary edema and/or neurogenic shock (stage 3B) is associated with rapid mortality in children. In a small pilot study, we found that milrinone reduced early mortality compared with historical controls. This prospective, randomized control trial was designed to provide more definitive evidence of the ability of milrinone to reduce the 1-week mortality of stage 3B enterovirus 71 infections. DESIGN: Prospective, unicenter, open-label, randomized, controlled study. SETTING: Inpatient ward of a large tertiary teaching hospital in Ho Chi Minh City, Vietnam. PATIENTS: Children (≤ 18 yr old) admitted with proven enterovirus 71-induced pulmonary edema and/or neurogenic shock. INTERVENTIONS: Patients were randomly assigned to receive intravenous milrinone (0.5 µg/kg/min) (n = 22) or conventional management (n = 19). Both groups received dopamine or dobutamine and intravenous immunoglobulin. MEASUREMENTS AND MAIN RESULTS: The primary endpoint was 1-week mortality. The secondary endpoints included length of ventilator dependence and hospital stay and adverse events. The median age was 2 years with a predominance of boys in both groups. The 1-week mortality was significantly lower, 18.2% (4/22) in the milrinone compared with 57.9% (11/19) in the conventional management group (relative risk = 0.314 [95% CI, 0.12-0.83], p = 0.01). The median duration of ventilator-free days was longer in the milrinone treatment group (p = 0.01). There was no apparent neurologic sequela in the survivors in either group, and no drug-related adverse events were documented. CONCLUSIONS: Milrinone significantly reduced the 1-week mortality of enterovirus 71-induced pulmonary edema and/or neurogenic shock without adverse effects. Further studies are needed to determine whether milrinone might be useful to prevent progression of earlier stages of brainstem encephalitis.
Assuntos
Cardiotônicos/uso terapêutico , Infecções por Enterovirus/virologia , Milrinona/uso terapêutico , Edema Pulmonar/tratamento farmacológico , Choque/tratamento farmacológico , Cardiotônicos/administração & dosagem , Pré-Escolar , Dobutamina/uso terapêutico , Dopamina/uso terapêutico , Infecções por Enterovirus/mortalidade , Feminino , Humanos , Imunoglobulinas/uso terapêutico , Lactente , Infusões Intravenosas , Tempo de Internação , Masculino , Milrinona/administração & dosagem , Estudos Prospectivos , Edema Pulmonar/mortalidade , Edema Pulmonar/virologia , Respiração Artificial , Choque/mortalidade , Choque/virologia , VietnãRESUMO
Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.
RESUMO
Antimicrobial resistance (AMR) is increasing worldwide due to overuse, misuse and incomplete treatment of antibiotics. Many countries are facing the excessive issue due to the spreading of AMR not only in humans and animals, but also in water and agri-food sector. Our main aim was to perform a competitive meta-analysis of surveillance-resistant microbes and their antimicrobial superintendence in Italy and Thailand. Data have been collected from reports published for the period 2012-2021. A total of 9507 and 11,753 food samples contained 3905 (41.07%) and 3526 (30%) AMR bacteria in Italy and Thailand, respectively. In Italy, the highest microbial prevalence was ß-lactam and tetracycline, while in Thailand mostly isolates showed resistance to cephalosporin and aminoglycoside. Our findings contribute to highlighting the increment of AMR related to different microbes with tendency to become multidrug resistant.
RESUMO
Antimicrobial resistance increases day by day around the world. To overcome this situation new antimicrobial agents are needed. Spices such as clove, ginger, coriander, garlic, and turmeric have the potential to fight resistant microbes. Due to their therapeutic properties, medicinal herbs and spices have been utilized as herbal medicines since antiquity. They are important sources of organic antibacterial substances that are employed in treating infectious disorders caused by pathogens such as bacteria. The main focus of the study is the bioactivity of the active ingredients present in different kinds of naturally available spices. We conducted a thorough search of PubMed, Google Scholar, and Research Gate for this review. We have read many kinds of available literature, and in this paper, we conclude that many different kinds of naturally available spices perform some form of bioactivity. After reading several papers, we found that some spices have good antimicrobial and antifungal properties, which may help in controlling the emerging antimicrobial resistance and improving human health. Spices have many phytochemicals, which show good antimicrobial and antifungal effects. This review of the literature concludes that the natural bioactivate compounds present in spices can be used as a drug to overcome antimicrobial resistance in human beings.
RESUMO
The "One Health" initiative is a critical strategy that recognizes the interconnectedness between human, animal, and environmental health in the spread and containment of infectious pathogens. With the ease of global transportation, transboundary disease outbreaks pose a significant threat to food safety and security, endangering public health and having a negative economic impact. Traditional diagnostic techniques based on genotypic and phenotypic analyses are expensive, time-consuming, and cannot be translated into point-of-care tools, hindering effective disease management and control. However, with advancements in molecular methods, biosensors, and new generation sequencing, rapid and reliable diagnostics are now available. This review provides a comprehensive insight into emergent viral and bacterial pathogens and antimicrobial resistance, highlighting the importance of "One Health" in connecting detection and effective treatment. By emphasizing the symbiotic relationship between human and animal health, this paper underscores the critical role of "One Health" initiatives in preventing and controlling infectious diseases.
RESUMO
Silver nanoparticles (AgNPs) have unlocked numerous novel disciplines in nanobiotechnological protocols due to their larger surface area-to-volume ratios, which are attributed to the marked reactivity of nanosilver, and due to their extremely small size, which enables AgNPs to enter cells, interact with organelles, and yield distinct biological effects. AgNPs are capable of bypassing immune cells, staying in the system for longer periods and with a higher distribution, reaching target tissues at higher concentrations, avoiding diffusion to adjacent tissues, releasing therapeutic agents or drugs for specific stimuli to achieve a longer duration at a specific rate, and yielding desired effects. The phytofabrication of AgNPs is a cost-effective, one-step, environmentally friendly, and easy method that harnesses sustainable resources and naturally available components of plant extracts (PEs). In addition, it processes various catalytic activities for the degradation of various organic pollutants. For the phytofabrication of AgNPs, plant products can be used in a multifunctional manner as a reducing agent, a stabilizing agent, and a functionalizing agent. In addition, they can be used to curtail the requirements for any additional stabilizing agents and to help the reaction stages subside. Azadirachta indica, a very common and prominent medicinal plant grown throughout the Indian subcontinent, possesses free radical scavenging and other pharmaceutical properties via the regulation of proinflammatory enzymes, such as COX and TOX. It also demonstrates anticancer activities through cell-signaling pathways, modulating tumor-suppressing genes such as p53 and pTEN, transcriptional factors, angiogenesis, and apoptosis via bcl2 and bax. In addition, it possesses antibacterial activities. Phytofabricated AgNPs have been applied in the areas of drug delivery, bioimaging, biosensing, cancer treatment, cosmetics, and cell biology. Such pharmaceutical and biological activities of phytofabricated AgNPs are attributed to more than 300 phytochemicals found in Azadirachta indica, and are especially abundant in flavonoids, polyphenols, diterpenoids, triterpenoids, limonoids, tannins, coumarin, nimbolide, azadirachtin, azadirone, azadiradione, and gedunin. Parts of Azadirachta indica, including the leaves in various forms, have been used for wound healing or as a repellent. This study was aimed at examining previously biosynthesized (from Azadirachta indica) AgNPs for anticancer, wound-healing, and antimicrobial actions (through MTT reduction assay, scratch assay, and microbroth dilution methods, respectively). Additionally, apoptosis in cancer cells and the antibiofilm capabilities of AgNPs were examined through caspase-3 expression, dentine block, and crystal violet methods. We found that biogenic silver nanoparticles are capable of inducing cytotoxicity in HCT-116 colon carcinoma cells (IC50 of 744.23 µg/mL, R2: 0.94), but are ineffective against MCF-7 breast cancer cells (IC50 >> 1000 µg/mL, R2: 0.86). AgNPs (IC50 value) induced a significant increase in caspase-3 expression (a 1.5-fold increase) in HCT-116, as compared with control cells. FITC-MFI was 1936 in HCT-116-treated cells, as compared to being 4551 in cisplatin and 1297 in untreated cells. AgNPs (6.26 µg/mL and 62.5 µg/mL) induced the cellular migration (40.2% and 33.23%, respectively) of V79 Chinese hamster lung fibroblasts; however, the improvement in wound healing was not significant as it was for the controls. AgNPs (MIC of 10 µg/mL) were very effective against MDR Enterococcus faecalis in the planktonic mode as well as in the biofilm mode. AgNPs (10 µg/mL and 320 µg/mL) reduced the E. faecalis biofilm by >50% and >80%, respectively. Natural products, such as Syzygium aromaticum (clove) oil (MIC of 312.5 µg/mL) and eugenol (MIC of 625 µg/mL), showed significant antimicrobial effects against A. indica. Our findings indicate that A. indica-functionalized AgNPs are effective against cancer cells and can induce apoptosis in HCT-116 colon carcinoma cells; however, the anticancer properties of AgNPs can also be upgraded through active targeting (functionalized with enzymes, antibiotics, photosensitizers, or antibodies) in immunotherapy, photothermal therapy, and photodynamic therapy. Our findings also suggest that functionalized AgNPs could be pivotal in the development of a novel, non-cytotoxic, biocompatible therapeutic agent for infected chronic wounds, ulcers, and skin lesions involving MDR pathogens via their incorporation into scaffolds, composites, patches, microgels, or formulations for microneedles, dressings, bandages, gels, or other drug-delivery systems.