RESUMO
Finding materials with negative thermal expansion (NTE) property is challenging. Tuning NTE is of fundamental and technological importance. Pressure enhanced negative thermal expansion behavior in 2H CuScO2 is found and expounded using density functional theory (DFT) and quasi-harmonious approximation (QHA). The frequencies of low energy modes and Grüneisen parameters decrease under pressure, but the bulk modulus increases with pressure. The transverse vibration of Cu atoms becomes stronger under pressure and the materials undergo thermal softening. These factors including thermal softening, pressure induced decrease of Grüneisen parameters and pressure induced strengthening of transverse vibration of Cu atoms all contribute to the enhanced negative thermal expansion property in 2H CuScO2 in view of the thermodynamic relationship , Grüneisen's theory of thermal expansion and the mechanism of NTE, respectively.
RESUMO
Nowadays, one of the most typical and important potential applications of negative thermal expansion (NTE) materials is to prepare zero thermal expansion or controllable coefficient thermal expansion materials by compounding them with positive thermal expansion materials. The research on NTE properties at the nanoscales is the basis and premise for the realization of high-quality composites. Here, using first-principles calculations, we take a typical open framework material ScF3 as an example to study a new NTE mechanism at the nanoscale, which involves edge and size effects, as well as crystal symmetry breaking. By analyzing the vibrational modes in ultrathin ScF3 films, three effects contributing to the NTE properties are identified, namely, the acoustic mode (ZA mode) induced by surface truncation, the enhanced rotations of ScF6 octahedra in the surface layer and the suppressed rotations of ScF6 octahedra in the inner layer due to crystal symmetry breaking. With increasing thickness, the effect of the ZA mode vibration gradually weakens, while the rotations of the ScF6 octahedra in the surface and inner layers are enhanced. Ultimately, the approximately mutual compensation of these three effects makes the NTE coefficients of different thicknesses almost unchanged. Finally, we simply generalize our conclusions to zero dimensional nanoparticles. This work reveals a new NTE mechanism in low-dimensional open framework materials, which serves as a guide in designing NTE materials at the nanoscale.
RESUMO
Designing negative thermal expansion (NTE) materials with a larger NTE coefficient and a wider temperature window is a great challenge nowadays, leading to the limitation of existing NTE materials such that only about 150 kinds of NTE materials have been discovered since 1996. Here, using first-principles calculations combined with the quasi-harmonic approximation (QHA), we find that the synergistic effect of different vibrational modes can significantly enhance the NTE in open framework compounds. We systematically investigate the NTE properties of the M2IIMIV(CN)8 (MII = Ni, Co, Fe, and Mn; MIV = Mo and W) family, which is the first kind of Prussian blue analogues (PBAs) with a 2D and 3D topology structure, to explore the synergistic enhancement effect in NTE. We reveal that both the optical modes of the rotational motion of [W(CN)8] and [Ni(NC)4] rigid units and the low frequency acoustic modes of the transverse vibration contribute significantly to the NTE. Furthermore, the coefficients of NTE increase monotonously with increasing ionic radius upon substituting Ni in M2IIW(CN)8 with Co, Fe, or Mn, respectively. Analyzing the vibrational modes of the substituted systems indicates that the dramatic changes in NTE originate from a highly synergistic effect, in which all the frequencies of these NTE modes have the same trend, i.e. the lower the frequencies, the larger the coefficient of NTE. This work clearly presents a synergistic mechanism of enhancing NTE in PBA materials, and sheds light on designing new materials with better properties.
RESUMO
Negative thermal expansion (NTE) originating from the transverse thermal vibrations of metal atoms is seldom reported, which is why the transparent conducting oxide 2H CuScO2 is such a unique case. Using the density functional theory (DFT) and the quasi-harmonic approximation (QHA), the thermal properties of 2H CuScO2 were investigated. The coefficient of thermal expansion (CTE) and the Grüneisen parameters of different vibrational modes were calculated, and we found that, up to a temperature of 200 K, 2H CuScO2 displays a strong NTE behavior along the c-axis (i.e. along the O-Cu-O linkage), with an average CTE of approximately -2 × 10-6 K-1. Our calculations are consistent with the experimental values. Furthermore, we reveal that low energy modes (0-150 cm-1) originating from the cooperation of transverse vibrations of Cu and O atoms, which result in larger negative Grüneisen parameters and vibrational frequency softening phenomenon under pressure, are the main reasons for the NTE of such materials with a 2H structure. Our findings not only provide a better understanding of the NTE mechanism, but also present a report on detailed abnormal thermal properties in 2H CuScO2 that have applications in electronic, electrochemical and optoelectronic devices.
RESUMO
The control of thermal expansion of solid compounds is intriguing but remains challenging. The effect of guests on the thermal expansion of open-framework structures was investigated. Notably, the presence of guest ions (K+ ) and molecules (H2 O) can substantially switch thermal expansion of YFe(CN)6 from negative (αv =-33.67×10-6 â K-1 ) to positive (αv =+42.72×10-6 â K-1 )-a range that covers the thermal expansion of most inorganic compounds. The mechanism of such substantial thermal expansion switching is revealed by joint studies with synchrotron X-ray diffraction, X-ray absorption fine structure, neutron powder diffraction, and density functional theory calculations. The presence of guest ions or molecules plays a critical damping effect on transverse vibrations, thus inhibiting negative thermal expansion. An effective method is demonstrated to control the thermal expansion in open-framework materials by adjusting the presence of guests.
RESUMO
Weyl semimetal (WSM) is a new type of topological quantum material for future spintronic devices. Using the first-principles density functional theory, we systematically investigated the thermal expansion properties, and the temperature dependence of isovolume heat capacity and bulk modulus in WSMs MX (M = Nb, Ta; X = P, As). We also presented the phonon dispersion curves and its variation under stress in MX and the anisotropic thermal expansion properties due to the anisotropic crystal structure in WSMs have been predicted in our calculations. Intriguing, we found that the heat capacities increase more rapidly with increasing temperature in the low temperature region for all MX. Furthermore, our results showed that the thermal expansion properties are determined mainly by the isovolume heat capacity at low temperatures, while the bulk modulus has the major effect at high temperatures. These results are useful for applications of WSMs in electronic and spintronic devices.
RESUMO
The vitamin B12 molecule has long fascinated chemists because of its exclusive complex structure and unusual reactivities in biological systems. In order to achieve a better understanding of the structural attribute of the Vitamin B12 molecule when it interacted with metal, in the present paper, the vitamin B12 molecules adsorbed on variation of copper electrode potential from 0 to -1.0 V was studied by surface-enhanced Raman spectroscopy (SERS). An excellent SERS substrate was obtained with insitu electrochemical oxidation-reduction cycle (ORC), and its surface roughness was characterized by atomic force microscope (AFM). Assignments of Raman peaks observed by normal Raman spectrum (NRS) and SERS spectra of vitamin B12 molecule were given based on previous literatures. It was found that the potential-dependent relative intensity changed in SERS spectra which depended on the vitamin B12 molecular orientation with respect to the copper surface according to the surface selection rule (SSR). It was concluded that the corrin ring was adsorbed in tilt form on copper surface and the Co-CN group was farther away from the copper surface at higher potentials. With the decrease in potential, the tilt angle between the corrin ring and copper surface became smaller, then the Co-N group and 5,6 dimethylbenzimidazole group got close to the copper surface. The results offered an important structural attribute of vitamin B12 molecule when it interacted with copper electrode for the first time, and supplied a meaningful reference for the electrochemical bioactivity of the vitamin B12 molecule.
Assuntos
Análise Espectral Raman , Vitamina B 12/análise , Adsorção , Cobre , Eletrodos , Oxirredução , Propriedades de SuperfícieRESUMO
Negative thermal expansion (NTE) is an abnormal physical behavior that has promising applications for high precision thermal control. Since Prussian blue analogues have the two central linking atoms of -C≡N-, they have large structure flexibility and are suitable to explore new NTE materials. However, understanding the nature of structure flexibility from the point of view of chemical bonding is important and urgent. Here, we adopt for the first time first-principles calculations to predict that the cubic TiCo(CN)6 and ScCo(CN)6 have NTE behavior. The calculated results for M in MCo(CN)6 (M = Fe, Ti and Co) indicated that the Sc-N bond is the strongest, but with the weakest direction dependence among the M-N bonds in the three systems. The lattice dynamics calculations results revealed that the low-frequency phonon vibration modes for NTE in MCo(CN)6 have much stronger relationship with the M-N bond feature. The present work reveals the important role of the related bond in the NTE open-framework materials.