Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 81(12): 2511-2521, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32857739

RESUMO

The struvite crystallization process can recover struvite crystals as a valuable slow-release fertilizer from the side stream of wastewater treatment plants (WWTPs). The purpose of this study is to demonstrate the crystal growth characteristics and determine the appropriate recovery criteria for a struvite crystallization pilot plant. A pilot plant (8.6 m3/d) was designed with a feeding system of MgO (magnesium oxide), a pH controller, and a hydrocyclone for recovering struvite; the plant was operated for 42 hours at a pH range of 8.25-8.5. The removal efficiencies for PO4-P and NH4-N were 82.5-90.7% and 13.4-22.9%, respectively. The struvite recovered from the hydrocyclone was sifted using standard sieves and analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The dry weight fraction of the precipitate in the 300-600 µm range increased gradually from 7% to 74% in 18 hours. The XRD analysis revealed that the crystalline structure of the precipitate in the 150-600 µm range indicates struvite without any peaks of MgO, Mg(OH)2, and MgCO3. This indicates that the critical conditions for recovering struvite from the side-stream of WWTPs are an operation period of 18 hours and a crystal size greater than 300 µm.


Assuntos
Compostos de Magnésio , Óxido de Magnésio , Cristalização , Fosfatos , Fósforo , Estruvita
2.
Water Sci Technol ; 81(11): 2300-2310, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32784275

RESUMO

Phosphorus crystallization-filtration (PCF) was devised as a novel tertiary process for phosphorus removal from domestic wastewater. The results obtained showed that during the PCF process, high pH and excessive calcium dosage conditions were required to obtain effluents with total phosphorus (T-P) and suspended solid (SS) concentrations below 0.2 and 10 mg/L, respectively, within 2 h of operation. Phosphorus was precipitated during the pre-treatment step, and thereafter it crystallized on the surface of the fixed seed material in the PCF reactor. Furthermore, the addition of Ca2+ resulted in phosphorus removal efficiencies >95%, and pH, residual Ca2+, filtration depth, and linear velocity were identified as the main design and operation parameters of the PCF process. Following the pilot-scale PCF process, the average concentrations of T-P, PO4-P, and SS in the effluent were 0.05, 0.04, and 1.1 mg/L, respectively, corresponding to removal efficiencies of 90.9, 86.5, and 79.7%, respectively. The investigation of the backwashing sludge characteristics of the PCF process using scanning electron microscopy (SEM), Fourier transform-infrared vacuum spectrometry (FT-IR), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses showed that owing to its high contents in calcite and hydrated phosphorus compounds, PCF sludge could be used as an alternative soil amendment resource.


Assuntos
Fósforo , Águas Residuárias , Cristalização , Durapatita , Esgotos , Espectroscopia de Infravermelho com Transformada de Fourier , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA