RESUMO
Understanding the immune response generated by SARS-CoV-2 is critical for assessing efficient therapeutic protocols and gaining insights into the durability of protective immunity. The current work was aimed at studying the specific humoral responses against SARS-CoV-2 in Cuban COVID-19 convalescents. We developed suitable tools and methods based on ELISA methodology, for supporting this evaluation. Here, we describe the development of an ELISA for the quantification of anti-RBD IgG titers in a large number of samples and a similar test in the presence of NH4SCN as chaotropic agent for estimating the RBD specific antibody avidity. Additionally, a simple and rapid ELISA based on antibody-mediated blockage of the binding RBD-ACE2 was implemented for detecting, as a surrogate of conventional test, the levels of anti-RBD inhibitory antibodies in convalescent sera. In a cohort of 273 unvaccinated convalescents, we identified higher anti-RBD IgG titer (1 : 1,330, p < 0.0001) and higher levels of inhibitory antibodies blocking RBD-ACE2 binding (1 : 216, p < 0.05) among those who had recovered from severe illness. Our results suggest that disease severity, and not demographic features such as age, sex, and skin color, is the main determinant of the magnitude and neutralizing ability of the anti-RBD antibody response. An additional paired longitudinal assessment in 14 symptomatic convalescents revealed a decline in the antiviral antibody response and the persistence of neutralizing antibodies for at least 4 months after the onset of symptoms. Overall, SARS-CoV-2 infection elicits different levels of antibody response according to disease severity that declines over time and can be monitored using our homemade serological assays.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Ensaio de Imunoadsorção Enzimática , Imunidade Humoral , Imunoglobulina G , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Cuba , Masculino , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Pessoa de Meia-Idade , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , Afinidade de Anticorpos/imunologiaRESUMO
A new synthetic strategy for the development of multivalent antibacterial glycoconjugate vaccines is described. The approach comprises the utilization of an isocyanide-based multicomponent process for the conjugation of functionalized capsular polysaccharides of S. pneumoniae and S. Typhi to carrier proteins such as diphtheria and tetanus toxoids. For the first time, oxo- and carboxylic acid-functionalized polysaccharides could be either independently or simultaneously conjugated to immunogenic proteins by means of the Ugi-multicomponent reaction, thus leading to mono- or multivalent unimolecular glycoconjugates as vaccine candidates. Despite the high molecular weight of the two or three reacting biomolecules, the multicomponent bioconjugation proved highly efficient and reproducible. The Ugi-derived glycoconjugates showed notable antigenicity and elicited good titers of functional specific antibodies. To our knowledge, this is the only bioconjugation method that enables the incorporation of two different polysaccharidic antigens to a carrier protein in a single step. Applications in the field of self-adjuvanting, eventually anticancer, multicomponent vaccines are foreseeable.
RESUMO
Capsular polysaccharides are important virulence factors of Streptococcus pneumoniae. The polysaccharide has been used as a component of vaccines against pneumococcal diseases either as plain polysaccharide or better conjugated to a protein. The last one is the vaccine of choice to target child protection. The immune responses depend on several polysaccharide physicochemical properties that can be affected during either purification or modification in the case of conjugate vaccines. In serotype 18C, the repeating unit has a complex structure having a branched pentasaccharide with two apparently labile subtituents: glycerol-phosphate and O-acetyl group. The loss of these groups may potentially reduce the ability of the 18C polysaccharide to induce the desired immune response. Therefore, the relationship of both groups with the antigenicity and immunogenicity of 18C capsular polysaccharide is explored. It is shown that glycerol-phosphate must be preserved for conserving adequate antigenicity of the 18C capsular polysaccharide. At the same time, it was proved that O-acetyl groups do not play any role for the antigenicity and immunogenicity.
Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Streptococcus pneumoniae/química , Streptococcus pneumoniae/imunologia , Animais , Humanos , Éteres Fosfolipídicos/química , Éteres Fosfolipídicos/imunologia , CoelhosRESUMO
A methods using high-performance reverse phase (RP) chromatography with fluorescence detection, has been developed to determine the composition and identity of Streptococcus pneumoniae capsular polysaccharide used in formulating conjugate vaccine for prevention of pneumococcal infection. For the monosaccharide composition, the polysaccharides were subjected to hydrofluoric acid (HF) hydrolysis followed by trifluoroacetic acid (TFA). After acid hydrolysis, the released monosaccharides were re-N-acetylated and labeled with 2-aminobenzamide (2AB) by reductive amination reaction. High-performance RP chromatography was performed on C18 TSKODS 120T column. Nuclear magnetic resonance was used to confirm chemical structure and purity of pneumococcal capsular polysaccharides.
Assuntos
Cromatografia/métodos , Polissacarídeos Bacterianos/análise , Streptococcus pneumoniae/química , Humanos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificaçãoRESUMO
A simple, specific, sensitive and reproducible ELISA has been developed to quantify the level of CPS (capsular polysaccharide) production in supernatants of Streptococcus pneumoniae cell cultures. CPSs from Strep. pneumoniae have been widely used as vaccine antigens. The quantification method is based on two type-23F serotype-specific polyclonal antibodies: IgG, purified from sera of mice immunized with a pneumococcal type-23F CPS conjugate, used in the coating step, and a serotype-specific rabbit serum as the second antibody. Solutions of purified type-23F CPS were used as standards. The relationship between A(492) and type-23F CPS concentration was linear over the range 1-310 ng/ml (r=0.989), with 1 ng/ml as the lower limit of sensitivity. The specificity of ELISA was assessed because purified type-19F CPS and cell-wall polysaccharide samples were not detected after their evaluation by the ELISA described in the present study. Repeatability and intermediate precision of the assay were good, the coefficients of variation being 3 and 10% respectively. This ELISA allowed selection of an appropriate vaccine strain, for a natural polysaccharide vaccine, among several 23F pneumococcal clinical isolates and constituted a valuable analytical tool for Strep. pneumoniae fermentation and CPS purification follow-up.
Assuntos
Cápsulas Bacterianas/química , Ensaio de Imunoadsorção Enzimática/métodos , Meningite Pneumocócica/diagnóstico , Polissacarídeos Bacterianos/análise , Streptococcus pneumoniae/classificação , Animais , Cápsulas Bacterianas/biossíntese , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/isolamento & purificação , Reprodutibilidade dos Testes , Streptococcus pneumoniae/metabolismoRESUMO
Polysaccharide-protein conjugates as vaccines have proven to be very effective in preventing Haemophilus influenzae type b infections in industrialized countries. However, cost-effective technologies need to be developed for increasing the availability of anti-H. influenzae type b vaccines in countries from the developing world. Consequently, vaccine production with partially synthetic antigens is a desirable goal for many reasons. They may be rigidly controlled for purity and effectiveness while at the same time being cheap enough that they may be made universally available. We describe here the antigenicity and immunogenicity of several H. influenzae type b synthetic oligosaccharide-protein conjugates in laboratory animals. The serum of H. influenzae type b-immunized animals recognized our synthetic H. influenzae type b antigens to the same extent as the native bacterial capsular polysaccharide. Compared to the anti-H. influenzae type b vaccine employed, these synthetic versions induced similar antibody response patterns in terms of titer, specificity, and functional capacity. The further development of synthetic vaccines will meet urgent needs in the less prosperous parts of the world and remains our major goal.