Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7999): 574-582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086421

RESUMO

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Assuntos
Astrócitos , Neuroproteção , Adenilil Ciclases/metabolismo , Astrócitos/citologia , Astrócitos/enzimologia , Astrócitos/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/metabolismo , Microglia/patologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/terapia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia , Glaucoma/patologia , Glaucoma/terapia
2.
Nature ; 594(7862): 277-282, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040258

RESUMO

Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours1. Although the role of neurons in tumour progression has previously been demonstrated2, the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood3,4, raising  the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation. Here we use an authenticated mouse model of OPG driven by mutations in the neurofibromatosis 1 tumour suppressor gene (Nf1)5 to demonstrate that stimulation of optic nerve activity increases optic glioma growth, and that decreasing visual experience via light deprivation prevents tumour formation and maintenance. We show that the initiation of Nf1-driven OPGs (Nf1-OPGs) depends on visual experience during a developmental period in which Nf1-mutant mice are susceptible to tumorigenesis. Germline Nf1 mutation in retinal neurons results in aberrantly increased shedding of neuroligin 3 (NLGN3) within the optic nerve in response to retinal neuronal activity. Moreover, genetic Nlgn3 loss or pharmacological inhibition of NLGN3 shedding blocks the formation and progression of Nf1-OPGs. Collectively, our studies establish an obligate role for neuronal activity in the development of some types of brain tumours, elucidate a therapeutic strategy to reduce OPG incidence or mitigate tumour progression, and underscore the role of Nf1mutation-mediated dysregulation of neuronal signalling pathways in mouse models of the NF1 cancer predisposition syndrome.


Assuntos
Transformação Celular Neoplásica/genética , Genes da Neurofibromatose 1 , Mutação , Neurofibromina 1/genética , Neurônios/metabolismo , Glioma do Nervo Óptico/genética , Glioma do Nervo Óptico/patologia , Animais , Astrocitoma/genética , Astrocitoma/patologia , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Transformação Celular Neoplásica/efeitos da radiação , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos da radiação , Nervo Óptico/citologia , Nervo Óptico/efeitos da radiação , Estimulação Luminosa , Retina/citologia , Retina/efeitos da radiação
3.
Mol Cell Proteomics ; 23(7): 100794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839039

RESUMO

Reversible cerebral vasoconstriction syndrome (RCVS) is a complex neurovascular disorder characterized by repetitive thunderclap headaches and reversible cerebral vasoconstriction. The pathophysiological mechanism of this mysterious syndrome remains underexplored and there is no clinically available molecular biomarker. To provide insight into the pathogenesis of RCVS, this study reported the first landscape of dysregulated proteome of cerebrospinal fluid (CSF) in patients with RCVS (n = 21) compared to the age- and sex-matched controls (n  = 20) using data-independent acquisition mass spectrometry. Protein-protein interaction and functional enrichment analysis were employed to construct functional protein networks using the RCVS proteome. An RCVS-CSF proteome library resource of 1054 proteins was established, which illuminated large groups of upregulated proteins enriched in the brain and blood-brain barrier (BBB). Personalized RCVS-CSF proteomic profiles from 17 RCVS patients and 20 controls reveal proteomic changes involving the complement system, adhesion molecules, and extracellular matrix, which may contribute to the disruption of BBB and dysregulation of neurovascular units. Moreover, an additional validation cohort validated a panel of biomarker candidates and a two-protein signature predicted by machine learning model to discriminate RCVS patients from controls with an area under the curve of 0.997. This study reveals the first RCVS proteome and a potential pathogenetic mechanism of BBB and neurovascular unit dysfunction. It also nominates potential biomarker candidates that are mechanistically plausible for RCVS, which may offer potential diagnostic and therapeutic opportunities beyond the clinical manifestations.


Assuntos
Biomarcadores , Proteoma , Humanos , Feminino , Proteoma/metabolismo , Masculino , Adulto , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Vasoconstrição , Pessoa de Meia-Idade , Transtornos da Cefaleia Primários/líquido cefalorraquidiano , Transtornos da Cefaleia Primários/metabolismo , Proteômica/métodos , Estudos de Casos e Controles , Mapas de Interação de Proteínas , Síndrome
4.
J Proteome Res ; 23(8): 3571-3584, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38994555

RESUMO

Aberrant glycosylation has gained significant interest for biomarker discovery. However, low detectability, complex glycan structures, and heterogeneity present challenges in glycoprotein assay development. Using haptoglobin (Hp) as a model, we developed an integrated platform combining functionalized magnetic nanoparticles and zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) for highly specific glycopeptide enrichment, followed by a data-independent acquisition (DIA) strategy to establish a deep cancer-specific Hp-glycosylation profile in hepatitis B virus (HBV, n = 5) and hepatocellular carcinoma (HCC, n = 5) patients. The DIA strategy established one of the deepest Hp-glycosylation landscapes (1029 glycopeptides, 130 glycans) across serum samples, including 54 glycopeptides exclusively detected in HCC patients. Additionally, single-shot DIA searches against a DIA-based spectral library outperformed the DDA approach by 2-3-fold glycopeptide coverage across patients. Among the four N-glycan sites on Hp (N-184, N-207, N-211, N-241), the total glycan type distribution revealed significantly enhanced detection of combined fucosylated-sialylated glycans, which were the most dominant glycoforms identified in HCC patients. Quantitation analysis revealed 48 glycopeptides significantly enriched in HCC (p < 0.05), including a hybrid monosialylated triantennary glycopeptide on the N-184 site with nearly none-to-all elevation to differentiate HCC from the HBV group (HCC/HBV ratio: 2462 ± 766, p < 0.05). In summary, DIA-MS presents an unbiased and comprehensive alternative for targeted glycoproteomics to guide discovery and validation of glyco-biomarkers.


Assuntos
Carcinoma Hepatocelular , Glicopeptídeos , Haptoglobinas , Neoplasias Hepáticas , Polissacarídeos , Humanos , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/metabolismo , Glicosilação , Haptoglobinas/metabolismo , Haptoglobinas/análise , Haptoglobinas/química , Polissacarídeos/sangue , Polissacarídeos/química , Polissacarídeos/análise , Glicopeptídeos/sangue , Glicopeptídeos/análise , Glicopeptídeos/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Biomarcadores Tumorais/sangue , Hepatite B/virologia , Hepatite B/sangue , Vírus da Hepatite B/química , Interações Hidrofóbicas e Hidrofílicas
5.
BMC Plant Biol ; 24(1): 106, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342898

RESUMO

BACKGROUND: The genus Libanotis Haller ex Zinn, nom. cons., a contentious member of Apiaceae, encompasses numerous economically and medicinally significant plants, comprising approximately 30 species distributed across Eurasia. Despite many previous taxonomic insights into it, phylogenetic studies of the genus are still lacking. And the establishment of a robust phylogenetic framework remains elusive, impeding advancements and revisions in the taxonomic system for this genus. Plastomes with greater variability in their genetic characteristics hold promise for building a more robust Libanotis phylogeny. RESULTS: During our research, we sequenced, assembled, and annotated complete plastomes for twelve Libanotis species belong to three sections and two closely related taxa. We conducted a comprehensive comparative analysis through totally thirteen Libanotis plastomes for the genus, including an additional plastome that had been published. Our results suggested that Libanotis plastome was highly conserved between different subclades, while the coding regions were more conserved than the non-coding regions, and the IR regions were more conserved than the single copy regions. Nevertheless, eight mutation hotspot regions were identified among plastomes, which can be considered as candidate DNA barcodes for accurate species identification in Libanotis. The phylogenetic analyses generated a robustly framework for Libanotis and revealed that Libanotis was not a monophyletic group and their all three sections were polygenetic. Libanotis schrenkiana was sister to L. sibirica, type species of this genus, but the remainders scattered within Selineae. CONCLUSION: The plastomes of Libanotis exhibited a high degree of conservation and was effective in enhancing the support and resolution of phylogenetic analyses within this genus. Based on evidence from both phylogeny and morphology, we propose the recognition of "Libanotis sensu stricto" and provide taxonomic recommendations for other taxa that previously belonged to Libanotis. In conclusion, our study not only revealed the phylogenetic position and plastid evolution of Libanotis, but also provided new insights into the phylogeny of the family Apiaceae and phylogenetic relationships within the tribe Selineae.


Assuntos
Apiaceae , Filogenia , Evolução Molecular , Plastídeos/genética , Plantas
6.
BMC Plant Biol ; 24(1): 70, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263006

RESUMO

BACKGROUND: The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS: In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION: The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.


Assuntos
Apiaceae , Sanicula , Filogenia , Plastídeos , Cloroplastos
7.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727927

RESUMO

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Assuntos
Apoptose , Ácido Ascórbico , Sobrevivência Celular , Glucose , Hiperglicemia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Epitélio Pigmentado da Retina , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Hiperglicemia/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/complicações , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Humanos , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Retinopatia Diabética/metabolismo , Retinopatia Diabética/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
8.
J Nanobiotechnology ; 22(1): 13, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167034

RESUMO

In recent years, the environmental health issue of microplastics has aroused an increasingly significant concern. Some studies suggested that exposure to polystyrene microplastics (PS-MPs) may lead to renal inflammation and oxidative stress in animals. However, little is known about the essential effects of PS-MPs with high-fat diet (HFD) on renal development and microenvironment. In this study, we provided the single-cell transcriptomic landscape of the kidney microenvironment induced by PS-MPs and HFD in mouse models by unbiased single-cell RNA sequencing (scRNA-seq). The kidney injury cell atlases in mice were evaluated after continued PS-MPs exposure, or HFD treated for 35 days. Results showed that PS-MPs plus HFD treatment aggravated the kidney injury and profibrotic microenvironment, reshaping mouse kidney cellular components. First, we found that PS-MPs plus HFD treatment acted on extracellular matrix organization of renal epithelial cells, specifically the proximal and distal convoluted tubule cells, to inhibit renal development and induce ROS-driven carcinogenesis. Second, PS-MPs plus HFD treatment induced activated PI3K-Akt, MAPK, and IL-17 signaling pathways in endothelial cells. Besides, PS-MPs plus HFD treatment markedly increased the proportions of CD8+ effector T cells and proliferating T cells. Notably, mononuclear phagocytes exhibited substantial remodeling and enriched in oxidative phosphorylation and chemical carcinogenesis pathways after PS-MPs plus HFD treatment, typified by alterations tissue-resident M2-like PF4+ macrophages. Multispectral immunofluorescence and immunohistochemistry identified PF4+ macrophages in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissues, indicating that activate PF4+ macrophages might regulate the profibrotic and pro-tumorigenic microenvironment after renal injury. In conclusion, this study first systematically revealed molecular variation of renal cells and immune cells in mice kidney microenvironment induced by PS-MPs and HFD with the scRNA-seq approach, which provided a molecular basis for decoding the effects of PS-MPs on genitourinary injury and understanding their potential profibrotic and carcinogenesis in mammals.


Assuntos
Microplásticos , Poliestirenos , Camundongos , Animais , Microplásticos/toxicidade , Plásticos , Análise da Expressão Gênica de Célula Única , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais , Fosfatidilinositol 3-Quinases , Rim , Carcinogênese , Mamíferos , Microambiente Tumoral
9.
Allergol Immunopathol (Madr) ; 52(4): 53-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970265

RESUMO

BACKGROUND: Pulmonary fibrosis is a pathological hallmark of lung injury. It is an aggressive disease that replaces normal lung parenchyma by fibrotic tissue. The transforming growth factor-beta-mothers against decapentaplegic homolog 3 (TGF-ß1-Smad3) signaling pathway plays a key role in regulating lung fibrosis. Decorin (DCN), a small leucine-rich proteoglycan, has a modulatory effect on the immune system by reversibly binding with TGF-ß and reducing its bioavailability. Mesenchymal stem cell (MSC) therapy is a new strategy that has an immune-modulatory capacity. OBJECTIVE: The aim of this study was to introduce a new therapeutic approach to harness remodeling in injured lung. MATERIAL AND METHODS: Bone marrow MSCs were isolated and transduced by decorin gene. Lung injury was induced by bleomycin and mice were treated with MSCs, MSCs-decorin, and decorin. Then, oxidative stress biomarkers, remodeling biomarkers, bronchoalveolar lavage cells, and histopathology study were conducted. RESULTS: Reduced catalase and superoxide dismutase increased due to treatments. Elevated malondialdehyde, hydroxyproline, TGF-ß levels, and polymorphonuclear cells count decreased in the treated groups. Additionally, the histopathology of lung tissues showed controlled inflammation and fibrosis. CONCLUSION: Transfected decorin gene to MSCs and used cell therapy could control remodeling and bleomycin-induced lung injury.


Assuntos
Bleomicina , Decorina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fibrose Pulmonar , Decorina/genética , Decorina/metabolismo , Animais , Camundongos , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/terapia , Lesão Pulmonar/imunologia , Lesão Pulmonar/genética , Transdução Genética , Estresse Oxidativo , Células Cultivadas , Modelos Animais de Doenças , Masculino , Humanos
10.
Chem Biodivers ; 21(6): e202400408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441384

RESUMO

To develop novel bacterial biofilm inhibiting agents, a series of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures were designed, synthesized, and characterized using 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry. Meanwhile, their biological activities were evaluated, and the ensuing structure-activity relationships were discussed. The bioassay results showed the substantial antimicrobial efficacy exhibited by most of the compounds. Among them, compound A24 demonstrated a strong efficacy with an EC50 value of 7.8 µg/mL in vitro against the Xanthomonas oryzae pv. oryzicola (Xoc) pathogen, surpassing commercial agents thiodiazole copper (31.8 µg/mL) and bismerthiazol (43.3 µg/mL). Mechanistic investigations into its anti-Xoc properties revealed that compound A24 operates by increasing the permeability of bacterial cell membranes, inhibiting biofilm formation and cell motility, and inducing morphological changes in bacterial cells. Importantly, in vivo tests showed its excellent protective and curative effects on rice bacterial leaf streak. Besides, molecular docking showed that the hydrophobic effect and hydrogen-bond interactions are key factors between the binding of A24 and AvrRxo1-ORF1. Therefore, these results suggest the utilization of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures as a bacterial biofilm inhibiting agent, warranting further exploration in the realm of agrochemical development.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Tiadiazóis , Xanthomonas , Tiadiazóis/química , Tiadiazóis/farmacologia , Tiadiazóis/síntese química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Xanthomonas/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Estrutura Molecular , Oryza/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA