Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 20(9): 6824-6830, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32816495

RESUMO

Light-emitting diodes (LEDs) based on III-V/II-VI materials have delivered a compelling performance in the mid-infrared (mid-IR) region, which enabled wide-ranging applications in sensing, including environmental monitoring, defense, and medical diagnostics. Continued efforts are underway to realize on-chip sensors via heterogeneous integration of mid-IR emitters on a silicon photonic chip, but the uptake of such an approach is limited by the high costs and interfacial strains, associated with the processes of heterogeneous integrations. Here, the black phosphorus (BP)-based van der Waals (vdW) heterostructures are exploited as room-temperature LEDs. The demonstrated devices emit linearly polarized light, and the spectra cover the technologically important mid-IR atmospheric window. Additionally, the BP LEDs exhibit fast modulation speed and exceptional operation stability. The measured peak extrinsic quantum efficiency is comparable to the III-V/II-VI mid-IR LEDs. By leveraging the integrability of vdW heterostructures, we further demonstrate a silicon photonic waveguide-integrated BP LED.

2.
ACS Nano ; 17(11): 10181-10190, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37212535

RESUMO

Modern infrared (IR) microscopy, communication, and sensing systems demand control of the spectral characteristics and polarization states of light. Typically, these systems require the cascading of multiple filters, polarization optics, and rotating components to manipulate light, inevitably increasing their sizes and complexities. Here, we report two-terminal mid-infrared (mid-IR) emitters, in which tuning the polarity of the applied bias can switch their emission peak wavelengths and linear polarization states along two orthogonal orientations. Our devices are composed of two back-to-back p-n junctions formed by stacking anisotropic light-emitting materials, black phosphorus and black arsenic-phosphorus with MoS2. By controlling the crystallographic orientations and engineering the band profile of heterostructures, the emissions of two junctions exhibit distinct spectral ranges and polarization directions; more importantly, these two electroluminescence (EL) units can be independently activated, depending on the polarity of the applied bias. Furthermore, we show that when operating our emitter under the polarity-switched pulse mode, the time-averaged EL exhibits the characteristics of broad spectral coverage, encompassing the entire first mid-IR atmospheric window (λ: 3-5 µm), and electrically tunable spectral shapes.

3.
ACS Appl Mater Interfaces ; 14(21): 24856-24863, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476925

RESUMO

Extending the operation wavelength of silicon photonics to the mid-infrared (mid-IR) band will significantly benefit critical application areas, including health care, astronomy, and chemical sensing. However, a major hurdle for mid-IR silicon photonics has been the lack of high-speed, high-responsivity, and low noise-equivalent power (NEP) photodetectors. Here, we demonstrate a van der Waals (vdW) heterostructure mid-IR photodetector integrated on a silicon-on-insulator (SOI) waveguide. The detector is composed of vertically stacked black phosphorus (BP)/molybdenum ditelluride (MoTe2). We measured high responsivity (up to 0.85 A/W) over a 3-4 µm spectral range, indicating that waveguide-confined light could strongly interact with vdW heterostructures on top. In addition, the waveguide-integrated detector could be modulated at high speed (>10 MHz) and its switching performance shows excellent stability. These results, together with the noise analysis, indicate that the NEP of the detector is as low as 8.2 pW/Hz1/2. This reported critical missing piece in the silicon photonic toolbox will enable the wide-spread adoption of mid-IR integrated photonic circuits.

4.
Nat Nanotechnol ; 17(7): 721-728, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35501377

RESUMO

Electrical manipulation of the valley degree of freedom in transition metal dichalcogenides is central to developing valleytronics. Towards this end, ferromagnetic contacts, such as Ga(Mn)As and permalloy, have been exploited to inject spin-polarized carriers into transition metal dichalcogenides to realize valley-dependent polarization. However, these materials require either a high external magnetic field or complicated epitaxial growth steps, limiting their practical applications. Here we report van der Waals heterostructures based on a monolayer WSe2 and an Fe3GeTe2/hexagonal boron nitride ferromagnetic tunnelling contact that under a bias voltage can effectively inject spin-polarized holes into WSe2, leading to a population imbalance between ±K valleys, as confirmed by density functional theory calculations and helicity-dependent electroluminescence measurements. Under an external magnetic field, we observe that the helicity of electroluminescence flips its sign and exhibits a hysteresis loop in agreement with the magnetic hysteresis loop obtained from reflective magnetic circular dichroism characterizations on Fe3GeTe2. Our results could address key challenges of valleytronics and prove promising for van der Waals magnets for magneto-optoelectronics applications.

5.
ACS Appl Mater Interfaces ; 14(28): 32665-32674, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35797527

RESUMO

A bias-selectable photodetector, which can sense the wavelength of interest by tuning the polarity of applied bias, is useful for target discrimination and identification applications. So far, those detectors are generally based on the back-to-back photodiode configuration via exploiting epitaxial semiconductors as optoelectronic materials, which inevitably lead to high fabrication costs and complex device architectures. Here, we demonstrate that our band-engineered van der Waals heterostructures can be applied as bias-selectable photodetectors. Our first prototypical device is mainly composed of black phosphorus (BP) and MoTe2 light absorbers sandwiching a thin MoS2 hole blocking layer. By varying the bias polarity, its spectral photoresponse can be switched between near-infrared and short-wave infrared bands, and our optoelectronic characterizations indicate that the detector can exhibit high external quantum efficiency (EQE) and fast operation speed. With this framework, we further demonstrate the detector with bias-selectable photoresponses within the mid-wave infrared band using BP/MoS2/arsenic-doped BP heterostructures and show that our developed detectors can be integrated into a single-pixel imaging system to capture dual-band infrared imaging.

6.
ACS Appl Mater Interfaces ; 12(1): 1201-1209, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31804794

RESUMO

Black phosphorus (BP), a narrow band gap semiconductor without out-of-plane dangling bonds, has shown promise for broadband and integrable photodetector applications. Simultaneously exhibiting high speed and high-efficiency operation, however, remains a critical challenge for current BP-based photodetectors. Here, we demonstrate a photodetector based on the BP-based van der Waals heterostructures. The developed photodetector enables broadband responses in the visible to mid-infrared range with external quantum efficiency ranging from 20 to 52% at room temperature. These results together with noise measurements indicate that the photodetector can detect light in the picowatt range. Furthermore, the demonstrated BP detector has ultrafast rise (1.8 ns) and fall (1.68 ns) times, and its photoresponse exhibits reproducible switching behavior even under consecutive and rapid light intensity modulations (2100 cycles, 200 MHz), as indicated by the eye-diagram measurement. By leveraging these features, we show our BP heterostructures can be configured as a point-like detector in a scanning confocal microscopy, useful for mid-infrared imaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA