RESUMO
General approaches for designing sequence-specific peptide-binding proteins would have wide utility in proteomics and synthetic biology. However, designing peptide-binding proteins is challenging, as most peptides do not have defined structures in isolation, and hydrogen bonds must be made to the buried polar groups in the peptide backbone1-3. Here, inspired by natural and re-engineered protein-peptide systems4-11, we set out to design proteins made out of repeating units that bind peptides with repeating sequences, with a one-to-one correspondence between the repeat units of the protein and those of the peptide. We use geometric hashing to identify protein backbones and peptide-docking arrangements that are compatible with bidentate hydrogen bonds between the side chains of the protein and the peptide backbone12. The remainder of the protein sequence is then optimized for folding and peptide binding. We design repeat proteins to bind to six different tripeptide-repeat sequences in polyproline II conformations. The proteins are hyperstable and bind to four to six tandem repeats of their tripeptide targets with nanomolar to picomolar affinities in vitro and in living cells. Crystal structures reveal repeating interactions between protein and peptide interactions as designed, including ladders of hydrogen bonds from protein side chains to peptide backbones. By redesigning the binding interfaces of individual repeat units, specificity can be achieved for non-repeating peptide sequences and for disordered regions of native proteins.
Assuntos
Peptídeos , Engenharia de Proteínas , Proteínas , Sequência de Aminoácidos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Engenharia de Proteínas/métodos , Ligação de Hidrogênio , Ligação Proteica , Dobramento de Proteína , Conformação ProteicaRESUMO
Regulation of immunity throughout an organism is critical for host defense. Previous studies in the nematode Caenorhabditis elegans have described an "ON/OFF" immune switch comprised of the antagonistic paralogs PALS-25 and PALS-22, which regulate resistance against intestinal and epidermal pathogens. Here, we identify and characterize a PALS-25 gain-of-function mutant protein with a premature stop (Q293*), which we find is freed from physical repression by its negative regulator, the PALS-22 protein. PALS-25(Q293*) activates two related gene expression programs, the Oomycete Recognition Response (ORR) against natural pathogens of the epidermis, and the Intracellular Pathogen Response (IPR) against natural intracellular pathogens of the intestine. A subset of ORR/IPR genes is upregulated in pals-25(Q293*) mutants, and they are resistant to oomycete infection in the epidermis, and microsporidia and virus infection in the intestine, but without compromising growth. Surprisingly, we find that activation of PALS-25 seems to primarily stimulate the downstream bZIP transcription factor ZIP-1 in the epidermis, with upregulation of gene expression in both the epidermis and in the intestine. Interestingly, we find that PALS-22/25-regulated epidermal-to-intestinal signaling promotes resistance to the N. parisii intestinal pathogen, demonstrating cross-tissue protective immune induction from one epithelial tissue to another in C. elegans.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Alelos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Mutação com Ganho de Função , Imunidade Inata/genética , Proteínas Mutantes/genéticaRESUMO
Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith-Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.
Assuntos
Síndrome de Smith-Magenis , Camundongos , Animais , Síndrome de Smith-Magenis/genética , Transativadores/genética , Transativadores/metabolismo , Fenótipo , Modelos Animais de Doenças , Cromatina , Hipocampo/metabolismo , Convulsões/genética , TretinoínaRESUMO
Haploinsufficiency in retinoic acid induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), a severe neurodevelopmental disorder characterized by neurocognitive deficits and obesity. Currently, curative treatments for SMS do not exist. Here, we take a recombinant adeno-associated virus (rAAV)-clustered regularly interspaced short palindromic repeats activation (CRISPRa) approach to increase expression of the remaining intact Rai1 allele. Building upon our previous work that found the paraventricular nucleus of hypothalamus plays a central role in SMS pathogenesis, we performed paraventricular nucleus of hypothalamus-specific rAAV-CRISPRa therapy by increasing endogenous Rai1 expression in SMS (Rai1±) mice. We found that rAAV-CRISPRa therapy rescues excessive repetitive behavior, delays the onset of obesity, and partially reduces hyperphagia in SMS mice. Our work provides evidence that rAAV-CRISPRa therapy during early adolescence can boost the expression of healthy Rai1 allele and modify disease progression in a mouse model of Smith-Magenis syndrome.
Assuntos
Síndrome de Smith-Magenis , Camundongos , Animais , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/terapia , Síndrome de Smith-Magenis/metabolismo , Transativadores/genética , Transativadores/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Haploinsuficiência , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Obesidade/genéticaRESUMO
Altered expressions of pro-/anti-oxidant genes are known to regulate the pathophysiology of obstructive sleep apnea (OSA).We aim to explore the role of a novel long non-coding (lnc) RNA FKSG29 in the development of intermittent hypoxia with re-oxygenation (IHR)-induced endothelial dysfunction in OSA. Gene expression levels of key pro-/anti-oxidant genes, vasoactive genes, and the FKSG29 were measured in peripheral blood mononuclear cells from 12 subjects with primary snoring (PS) and 36 OSA patients. Human monocytic THP-1 cells and human umbilical vein endothelial cells (HUVEC) were used for gene knockout and double luciferase under IHR exposure. Gene expression levels of the FKSG29 lncRNA, NOX2, NOX5, and VEGFA genes were increased in OSA patients versus PS subjects, while SOD2 and VEGFB gene expressions were decreased. Subgroup analysis showed that gene expression of the miR-23a-3p, an endogenous competitive microRNA of the FKSG29, was decreased in sleep-disordered breathing patients with hypertension versus those without hypertension. In vitro IHR experiments showed that knock-down of the FKSG29 reversed IHR-induced ROS overt production, early apoptosis, up-regulations of the HIF1A/HIF2A/NOX2/NOX4/NOX5/VEGFA/VEGFB genes, and down-regulations of the VEGFB/SOD2 genes, while the protective effects of FKSG29 knock-down were abolished by miR-23a-3p knock-down. Dual-luciferase reporter assays confirmed that FKSG29 was a sponge of miR-23a-3p, which regulated IL6R directly. Immunofluorescence stain further demonstrated that FKSGH29 knock-down decreased IHR-induced uptake of oxidized low density lipoprotein and reversed IHR-induced IL6R/STAT3/GATA6/ICAM1/VCAM1 up-regulations. The findings indicate that the combined RNA interference may be a novel therapy for OSA-related endothelial dysfunction via regulating pro-/anti-oxidant imbalance or targeting miR-23a-IL6R-ICAM1/VCAM1 signaling.
RESUMO
BACKGROUND: Ultraviolet (UV) irradiation is one of the major causes of skin aging. To date, there remains limited evidence on using oral probiotics for skin anti-photoaging. OBJECTIVES: This systematic review and meta-analysis aims to assess the effects of probiotics on skin photoaging. METHODS: We searched the PubMed and Embase databases for studies published until August 31, 2021, and included randomized controlled trials, murine randomized controlled experiments, and in vitro studies. Skin barrier function was compared between UV irradiated probiotics and controls. RESULTS: After given oral probiotics supplements, a significant reduction was shown in all types of measured MMPs in both murine and in vitro studies. Oral probiotics supplementation significantly reversed UV-induced increase of epidermal thickness (standardized mean differences [SMD] = -1.76; 95% confidence interval [CI] = -3.04 to -0.49; p = .007; I2 = 81%), UV-induced increase trans-epidermal water loss (SMD = -1.72; 95% CI = -2.76 to -0.67; p = .001; I2 = 57%), and UV-induced skin dehydration (SMD = 1.85; 95% CI = 1.16 to 2.55; p < .00001; I2 = 4%). CONCLUSIONS: Probiotics are effective against skin photoaging in terms of MMP pathways and reversing skin barrier function from murine randomized data. Further randomized controlled trials on humans are required to warrant these results.
Assuntos
Probióticos , Envelhecimento da Pele , Humanos , Animais , Camundongos , Probióticos/farmacologia , Pele/efeitos da radiação , Epiderme , Raios UltravioletaRESUMO
Magnusiomyces capitatus is a dimorphic yeast commonly isolated from the environment and was uncommonly reported as a disease in Asia. It may cause invasive infection in patients with hematological malignancies, especially those with neutropenia, and resulting in high mortality. Herein, we reported a man with nasopharyngeal carcinoma and hepatocellular carcinoma suffered from intermittent fever after pulmonary nodules resection. The histopathology showed yeast-like fungal elements. For further identification, we extracted the tissue DNA from formalin-fixed paraffin-embedded tissue and M. capitatus was confirmed using polymerase chain reaction amplification and sequencing of the ITS region of ribosomal DNA. After a 4-week amphotericin B and flucytosine treatment, his condition recovered well and then was followed by a 3-month oral fluconazole treatment. There was no evidence of recurrence within one year. Our case highlights that nucleic acids obtained from formalin-fixed tissue could be a feasible identification method, especially in those whose culture results are unavailable.
RESUMO
Trigeminal neuropathic pain is the most debilitating pain disorder but current treatments including opiates are not effective. A common symptom of trigeminal neuropathic pain is cold allodynia/hyperalgesia or cold hypersensitivity in orofacial area, a region where exposure to cooling temperatures are inevitable in daily life. Mechanisms underlying trigeminal neuropathic pain manifested with cold hypersensitivity are not fully understood. In this study, we investigated trigeminal neuropathic pain in male rats following infraorbital nerve chronic constrictive injury (ION-CCI). Assessed by the orofacial operant behavioral test, ION-CCI animals displayed orofacial cold hypersensitivity. The cold hypersensitivity was associated with the hyperexcitability of small-sized trigeminal ganglion (TG) neurons that innervated orofacial regions. Furthermore, ION-CCI resulted in a reduction of A-type voltage-gated K+ currents (IA currents) in these TG neurons. We further showed that these small-sized TG neurons expressed Kv4.3 voltage-gated K+ channels, and Kv4.3 expression in these cells was significantly downregulated following ION-CCI. Pharmacological inhibition of Kv4.3 channels with phrixotoxin-2 inhibited IA-currents in these TG neurons and induced orofacial cold hypersensitivity. On the other hand, pharmacological potentiation of Kv4.3 channels amplified IA currents in these TG neurons and alleviated orofacial cold hypersensitivity in ION-CCI rats. Collectively, Kv4.3 downregulation in nociceptive trigeminal afferent fibers may contribute to peripheral cold hypersensitivity following trigeminal nerve injury, and Kv4.3 activators may be clinically useful to alleviate trigeminal neuropathic pain.SIGNIFICANCE STATEMENT Trigeminal neuropathic pain, the most debilitating pain disorder, is often triggered and exacerbated by cooling temperatures. Here, we created infraorbital nerve chronic constrictive injury (ION-CCI) in rats, an animal model of trigeminal neuropathic pain to show that dysfunction of Kv4.3 voltage-gated K+ channels in nociceptive-like trigeminal ganglion (TG) neurons underlies the trigeminal neuropathic pain manifested with cold hypersensitivity in orofacial regions. Furthermore, we demonstrate that pharmacological potentiation of Kv4.3 channels can alleviate orofacial cold hypersensitivity in ION-CCI rats. Our results may have clinical implications in trigeminal neuropathic pain in human patients, and Kv4.3 channels may be an effective therapeutic target for this devastating pain disorder.
Assuntos
Hiperalgesia/metabolismo , Canais de Potássio Shal/metabolismo , Neuralgia do Trigêmeo/metabolismo , Animais , Temperatura Baixa , Face , Masculino , Neurônios Aferentes/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
IB4-positive maxillary trigeminal ganglion (TG) neurons are a subtype of afferent neurons involving nociception in orofacial regions, and excitability of these neurons is associated with orofacial nociceptive sensitivity. TREK-2 channel is a member of two-pore domain potassium (K2P) channel family mediating leak K+ currents. It has been shown previously that TREK-2 channel activity can be enhanced following GABAB receptor activation, leading to a reduction of cortical neuron excitability. In the present study, we have characterized TREK-2 channel expression on maxillary TG neurons and investigated the effect of the GABAB agonist baclofen on electrophysiological properties of small-sized maxillary TG neurons of rats. We show with immunohistochemistry that TREK-2 channels are predominantly expressed in small-sized IB4-positive maxillary TG neurons. Patch-clamp recordings on neurons in ex vivo TG preparations show that baclofen hyperpolarizes resting membrane potentials, increases outward leak currents, and decreases input resistances in IB4-positive maxillary TG neurons. Moreover, baclofen significantly reduces action potential (AP) firing in IB4-positive maxillary TG neurons. In contrast, baclofen shows no significant effect on electrophysiological properties of small-sized nociceptive-like and non-nociceptive-like maxillary trigeminal neurons that are IB4-negatve. Our results suggest that TREK-2 channel activity can be enhanced by baclofen, leading to reduced excitability of IB4-positive maxillary TG neurons. This finding provides new insights into the role of TREK-2 and GABAB receptors in controlling nociceptive sensitivity in orofacial regions, which may have therapeutic implications.
Assuntos
Neurônios/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Gânglio Trigeminal/metabolismo , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Nociceptividade/efeitos dos fármacos , Ratos Sprague-DawleyRESUMO
BACKGROUND: The efficacy of digital technology in improving diabetes management has typically been demonstrated through studies such as randomized controlled trials, which have reported a steeper reduction in hemoglobin A1c (HbA1c) values for patients who adopted a digital solution. However, evidence from real-world clinical practice is still limited. OBJECTIVE: This study aimed to evaluate the effectiveness of digital interventions by tracking HbA1c improvements over 1 year in real-world clinical settings. METHODS: Patients used the Health2Sync mobile app to track self-measured outcomes and communicate with health care professionals (HCPs). HCPs used the web-based Patient Management Platform to monitor patient data, view test results from clinical laboratories, and communicate with patients. Patients who have been onboarded for at least 13 months and have consecutive HbA1c findings for 5 quarters were included in the analysis. They were then stratified into 3 groups (high, mid, and low retention) based on their level of use of Health2Sync in the first 6 months of onboarding. A mixed model was built to compare the slopes of the rate of reduction in HbA1c among the groups. In addition, these patients' retention on the app from the seventh to the 12th month was verified through multiple comparisons. RESULTS: A sample of 2036 users was included in the analysis. With the mixed model coefficient estimates, we found that app users had significant HbA1c percentage reductions as the passed quarter count increased (t=-9.869; P<.001), and that effectiveness increased in the high (t=-5.173) and mid retention (t=-6.620) groups as the interaction effects were significantly negative compared to that in the low retention group (P<.001) in the passed quarter count. The low retention group also had the highest average HbA1c value at the end of 13 months (high: 7.01%, SD 1.02%; mid: 6.99%, SD 1.00%; low: 7.17%, SD 1.14%) (Bonferroni correction: high vs low, P=.07; mid vs low, P=.02; high vs mid, P>.99). The level of use of the app remained consistent in the seventh to the 12th month after onboarding (high: 5.23 [SD 1.37] months, mid: 2.43 [SD 1.68] months, low: 0.41 [SD 0.97] months) (P<.001). CONCLUSIONS: Our analysis shows that continuous usage of the diabetes management app is associated with better glycemic control in real-world clinical practice. Further studies are required to reveal the efficacy for specific diabetes types and to observe effects beyond 1 year.
Assuntos
Diabetes Mellitus Tipo 2 , Aplicativos Móveis , Diabetes Mellitus Tipo 2/terapia , Hemoglobinas Glicadas/análise , Controle Glicêmico , Humanos , Estudos RetrospectivosRESUMO
The impacts of sex differences on the biology of various organ systems and the influences of sex hormones on modulating health and disease have become increasingly relevant in clinical and biomedical research. A growing body of evidence has recently suggested fundamental sex differences in cardiovascular and cognitive function, including anatomy, pathophysiology, incidence and age of disease onset, symptoms affecting disease diagnosis, disease severity, progression, and treatment responses and outcomes. Atrial fibrillation (AF) is currently recognized as the most prevalent sustained arrhythmia and might contribute to the pathogenesis and progression of vascular cognitive impairment (VCI), including a range of cognitive deficits, from mild cognitive impairment to dementia. In this review, we describe sex-based differences and sex hormone functions in the physiology of the brain and vasculature and the pathophysiology of disorders therein, with special emphasis on AF and VCI. Deciphering how sex hormones and their receptor signaling (estrogen and androgen receptors) potentially impact on sex differences could help to reveal disease links between AF and VCI and identify therapeutic targets that may lead to potentially novel therapeutic interventions early in the disease course of AF and VCI.
Assuntos
Fibrilação Atrial/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Demência Vascular/fisiopatologia , Hormônios Esteroides Gonadais/metabolismo , Feminino , Humanos , Masculino , Fatores SexuaisRESUMO
BACKGROUND: Seroma formation is common in patients with breast cancer after axillary dissection. Fibrin sealant, containing fibrinogen and thrombin, has been developed to improve wound healing. We conducted a systematic review and meta-analysis to evaluate the efficacy of fibrin sealants in reducing seroma among patients with breast cancer undergoing axillary dissection. METHODS: We searched the PubMed, EMBASE, and Cochrane Library databases for randomized controlled trials (RCTs) published up to April 2020. Pooled estimates of the outcomes were computed using a random-effects model. The primary outcomes were incidence and volume of seroma, while the secondary outcomes were volume and duration of drainage, incidence of infection, and length of hospital stay. RESULTS: We reviewed 23 RCTs that included 1640 patients. Compared with the control group, the fibrin sealant group had no significant differences in the incidence of seroma, length of hospital stay, or incidence of surgical site infection. Significant intergroup differences were discovered in lower volume of seroma (weighted mean difference [WMD] - 71.88, 95% confidence interval [CI] - 135.58 to - 8.19), volume of drainage (WMD - 73.24, 95% CI - 107.32 to - 39.15), and duration of drainage (WMD - 0.84, 95% CI - 1.50 to - 0.19). CONCLUSIONS: Fibrin sealants provide limited benefits in reducing the volume of seroma and the volume and duration of drainage. Therefore, after shared decision making, surgeons may apply fibrin sealants to patients with breast cancer undergoing axillary dissection.
Assuntos
Neoplasias da Mama , Seroma , Neoplasias da Mama/cirurgia , Dissecação , Adesivo Tecidual de Fibrina/uso terapêutico , Humanos , Complicações Pós-Operatórias/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Seroma/etiologia , Seroma/prevenção & controleRESUMO
We study collisional loss of a quasi-one-dimensional spin-polarized Fermi gas near a p-wave Feshbach resonance in ultracold ^{6}Li atoms. We measure the location of the p-wave resonance in quasi-1D and observe a confinement-induced shift and broadening. We find that the three-body loss coefficient L_{3} as a function of the quasi-1D confinement has little dependence on confinement strength. We also analyze the atom loss with a two-step cascade three-body loss model in which weakly bound dimers are formed prior to their loss arising from atom-dimer collisions. Our data are consistent with this model. We also find a possible suppression in the rate of dimer relaxation with strong quasi-1D confinement. We discuss the implications of these measurements for observing p-wave pairing in quasi-1D.
RESUMO
Oral cancer is one of the most common cancers worldwide, and there are currently no biomarkers approved for aiding its management. Although many potential oral cancer biomarkers have been discovered, very few have been verified in body fluid specimens in parallel to evaluate their clinical utility. The lack of appropriate multiplexed assays for chosen targets represents one of the bottlenecks to achieving this goal. In the present study, we develop a peptide immunoaffinity enrichment-coupled multiple reaction monitoring-mass spectrometry (SISCAPA-MRM) assay for verifying multiple reported oral cancer biomarkers in saliva. We successfully produced 363 clones of mouse anti-peptide monoclonal antibodies (mAbs) against 36 of 49 selected targets, and characterized useful mAbs against 24 targets in terms of their binding affinity for peptide antigens and immuno-capture ability. Comparative analyses revealed that an equilibrium dissociation constant (KD ) cut-off value < 2.82 × 10-9 m could identify most clones with an immuno-capture recovery rate >5%. Using these mAbs, we assembled a 24-plex SISCAPA-MRM assay and optimized assay conditions in a 25-µg saliva matrix background. This multiplexed assay showed reasonable precision (median coefficient of variation, 7.16 to 32.09%), with lower limits of quantitation (LLOQ) of <10, 10-50, and >50 ng/ml for 14, 7 and 3 targets, respectively. When applied to a model saliva sample pooled from oral cancer patients, this assay could detect 19 targets at higher salivary levels than their LLOQs. Finally, we demonstrated the utility of this assay for quantification of multiple targets in individual saliva samples (20 healthy donors and 21 oral cancer patients), showing that levels of six targets were significantly altered in cancer compared with the control group. We propose that this assay could be used in future studies to compare the clinical utility of multiple oral cancer biomarker candidates in a large cohort of saliva samples.
Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/diagnóstico , Espectrometria de Massas/métodos , Neoplasias Bucais/diagnóstico , Proteômica/métodos , Saliva/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Biomarcadores Tumorais/metabolismo , Simulação por Computador , Humanos , Imunoensaio , Limite de Detecção , Camundongos , Peptídeos/imunologiaRESUMO
BACKGROUND: A healthy migrant effect on birth outcomes has been reported, however, whether this protective effect persists throughout childhood is unknown. The effect of urbanicity on child health among an immigrant population is unclear. The objective of this study was to compare the incidence rate and cumulative incidence of severe diseases among urban children of Taiwan-born mothers, rural children of Taiwan-born mothers, urban children of foreign-born mothers, and rural children of foreign-born mothers. METHODS: A nationwide cohort study was conducted for children born in Taiwan during 2004-2011 and follow-up till age 4 to 11 years old by linkage the Taiwan Birth Registry 2004-2011, Taiwan Death Registry 2004-2015, and National Health Insurance Research Database 2004-2015. Cox proportional hazards model (multivariable) was used to examine differences among the four study groups. RESULTS: There were 682,982 urban children of Taiwan-born mothers, 662,818 rural children of Taiwan-born mothers, 61,570 urban children of foreign-born mothers, 87,473 rural children of foreign-born mothers. Children of foreign-born mothers had a lower incidence of vasculitis, mainly Kawasaki disease. The incidences of congenital disorders did not differ between children of foreign-born mothers and children of Taiwan-born mothers. The incidence of psychotic disorders was higher in urban children. However, children in rural areas had a higher incidence of major trauma/burn and a higher mortality rate. CONCLUSIONS: A healthy migrant effect was only seen for Kawasaki disease. The mental health of urban children born to immigrant mothers warrants concern.
Assuntos
Emigrantes e Imigrantes , Mães , Pediatria , Criança , Pré-Escolar , Estudos de Coortes , Etnicidade , Feminino , Humanos , Incidência , Masculino , População Rural , Índice de Gravidade de Doença , Taiwan/epidemiologia , População UrbanaRESUMO
Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.
Assuntos
Cílios/genética , Ciliopatias/genética , Face/embriologia , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Animais , Cílios/patologia , Ciliopatias/patologia , Face/patologia , Regulação da Expressão Gênica no Desenvolvimento , Cinesinas/genética , Camundongos , Camundongos Transgênicos , Fenótipo , Isoformas de Proteínas/genética , Modificação Traducional de Proteínas/genética , Transdução de Sinais/genética , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de ZincoRESUMO
Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless), a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless) in regulation of telomere stability in cancer cells.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Instabilidade de Microssatélites , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Telômeros/genética , Replicação do DNA/genética , Instabilidade Genômica , Heterocromatina/genética , Humanos , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Schizosaccharomyces/genética , Telômero/genética , Homeostase do Telômero , Encurtamento do Telômero/genéticaRESUMO
Most cases of oral squamous cell carcinoma (OSCC) develop from visible oral potentially malignant disorders (OPMDs). The latter exhibit heterogeneous subtypes with different transformation potentials, complicating the early detection of OSCC during routine visual oral cancer screenings. To develop clinically applicable biomarkers, we collected saliva samples from 96 healthy controls, 103 low-risk OPMDs, 130 high-risk OPMDs, and 131 OSCC subjects. These individuals were enrolled in Taiwan's Oral Cancer Screening Program. We identified 302 protein biomarkers reported in the literature and/or through in-house studies and prioritized 49 proteins for quantification in the saliva samples using multiple reaction monitoring-MS. Twenty-eight proteins were successfully quantified with high confidence. The quantification data from non-OSCC subjects (healthy controls + low-risk OPMDs) and OSCC subjects in the training set were subjected to classification and regression tree analyses, through which we generated a four-protein panel consisting of MMP1, KNG1, ANXA2, and HSPA5. A risk-score scheme was established, and the panel showed high sensitivity (87.5%) and specificity (80.5%) in the test set to distinguish OSCC samples from non-OSCC samples. The risk score >0.4 detected 84% (42/50) of the stage I OSCCs and a significant portion (42%) of the high-risk OPMDs. Moreover, among 88 high-risk OPMD patients with available follow-up results, 18 developed OSCC within 5 y; of them, 77.8% (14/18) had risk scores >0.4. Our four-protein panel may therefore offer a clinically effective tool for detecting OSCC and monitoring high-risk OPMDs through a readily available biofluid.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Carcinoma de Células Escamosas/patologia , Cromatografia Líquida , Demografia , Detecção Precoce de Câncer , Chaperona BiP do Retículo Endoplasmático , Feminino , Seguimentos , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Estadiamento de Neoplasias , Fatores de Risco , Saliva/metabolismo , TaiwanRESUMO
Ciliopathies are a class of diseases caused by the loss of a ubiquitous, microtubule-based organelle called a primary cilium. Ciliopathies commonly result in defective development of the craniofacial complex, causing midfacial defects, craniosynostosis, micrognathia and aglossia. Herein, we explored how the conditional loss of primary cilia on neural crest cells (Kif3af/f;Wnt1-Cre) generated aglossia. On a cellular level, our data revealed that aglossia in Kif3af/f;Wnt1-Cre embryos was due to a loss of mesoderm-derived muscle precursors migrating into and surviving in the tongue anlage. To determine the molecular basis for this phenotype, we performed RNA-seq, in situ hybridization, qPCR and Western blot analyses. We found that transduction of the Sonic hedgehog (Shh) pathway, rather than other pathways previously implicated in tongue development, was aberrant in Kif3af/f;Wnt1-Cre embryos. Despite increased production of full-length GLI2 and GLI3 isoforms, previously identified GLI targets important for mandibular and glossal development (Foxf1, Foxf2, Foxd1 and Foxd2) were transcriptionally downregulated in Kif3af/f;Wnt1-Cre embryos. Genetic removal of GLI activator (GLIA) isoforms in neural crest cells recapitulated the aglossia phenotype and downregulated Fox gene expression. Genetic addition of GLIA isoforms in neural crest cells partially rescued the aglossia phenotype and Fox gene expression in Kif3af/f;Wnt1-Cre embryos. Together, our data suggested that glossal development requires primary cilia-dependent GLIA activity in neural crest cells. Furthermore, these data, in conjunction with our previous work, suggested prominence specific roles for GLI isoforms; with development of the frontonasal prominence relying heavily on the repressor isoform and the development of the mandibular prominence/tongue relying heavily on the activator isoform.
Assuntos
Cílios/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Língua/embriologia , Língua/metabolismo , Animais , Apoptose , Movimento Celular , Deleção de Genes , Proteínas Hedgehog/metabolismo , Integrases/metabolismo , Cinesinas , Mandíbula/embriologia , Mandíbula/metabolismo , Mesoderma/patologia , Camundongos , Modelos Biológicos , Músculos/patologia , Mutação/genética , Crista Neural/patologia , Organogênese , Fenótipo , Transdução de Sinais , Células-Tronco/patologia , Proteína Wnt1/metabolismo , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de ZincoRESUMO
Pulmonary hypertension (PH) is a lethal condition, and current vasodilator therapy has limited effect. Antiproliferative strategies targeting platelet-derived growth factor (PDGF) receptors, such as imatinib, have generated promising results in animal studies. Imatinib is, however, a nonspecific tyrosine kinase inhibitor and has in clinical studies caused unacceptable adverse events. Further studies are needed on the role of PDGF signaling in PH. Here, mice expressing a variant of PDGF-B with no retention motif ( Pdgfbret/ret), resulting in defective binding to extracellular matrix, were studied. Following 4 wk of hypoxia, right ventricular systolic pressure, right ventricular hypertrophy, and vascular remodeling were examined. Pdgfbret/ret mice did not develop PH, as assessed by hemodynamic parameters. Hypoxia did, however, induce vascular remodeling in Pdgfbret/ret mice; but unlike the situation in controls where the remodeling led to an increased concentric muscularization of arteries, the vascular remodeling in Pdgfbret/ret mice was characterized by a diffuse muscularization, in which cells expressing smooth muscle cell markers were found in the interalveolar septa detached from the normally muscularized intra-acinar vessels. Additionally, fewer NG2-positive perivascular cells were found in Pdgfbret/ret lungs, and mRNA analyses showed significantly increased levels of Il6 following hypoxia, a known promigratory factor for pericytes. No differences in proliferation were detected at 4 wk. This study emphasizes the importance of extracellular matrix-growth factor interactions and adds to previous knowledge of PDGF-B in PH pathobiology. In summary, Pdgfbret/ret mice have unaltered hemodynamic parameters following chronic hypoxia, possibly secondary to a disorganized vascular muscularization.