Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cancer Cell Int ; 23(1): 111, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37291545

RESUMO

Glioblastoma is the most common primary central nervous system tumor in adults. Angiotensin II receptor blockers (ARBs) are broadly applied to treat hypertension. Moreover, research has revealed that ARBs have the capacity to suppress the growth of several cancer types. In this study, we assessed the effects of three ARBs with the ability to cross the blood brain barrier (telmisartan, valsartan and fimasartan) on cell proliferation in three glioblastoma multiforme (GBM) cell lines. Telmisartan markedly suppressed the proliferation, migration, and invasion of these three GBM cell lines. Microarray data analysis revealed that telmisartan regulates DNA replication, mismatch repair, and the cell cycle pathway in GBM cells. Furthermore, telmisartan induced G0/G1 phase arrest and apoptosis. The bioinformatic analysis and western blotting results provide evidence that SOX9 is a downstream target of telmisartan. Telmisartan also suppressed tumor growth in vivo in an orthotopic transplant mouse model. Therefore, telmisartan is a potential treatment for human GBM.

2.
Biochem J ; 478(12): 2201-2215, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34047349

RESUMO

4-Hydroxylphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxylphenylpyruvate (HPP) to homogentisate, the important step for tyrosine catabolism. Comparison of the structure of human HPPD with the substrate-bound structure of A. thaliana HPPD revealed notably different orientations of the C-terminal helix. This helix performed as a closed conformation in human enzyme. Simulation revealed a different substrate-binding mode in which the carboxyl group of HPP interacted by a H-bond network formed by Gln334, Glu349 (the metal-binding ligand), and Asn363 (in the C-terminal helix). The 4-hydroxyl group of HPP interacted with Gln251 and Gln265. The relative activity and substrate-binding affinity were preserved for the Q334A mutant, implying the alternative role of Asn363 for HPP binding and catalysis. The reduction in kcat/Km of the Asn363 mutants confirmed the critical role in catalysis. Compared to the N363A mutant, the dramatic reduction in the Kd and thermal stability of the N363D mutant implies the side-chain effect in the hinge region rotation of the C-terminal helix. The activity and binding affinity were not recovered by double mutation; however, the 4-hydroxyphenylacetate intermediate formation by the uncoupled reaction of Q334N/N363Q and Q334A/N363D mutants indicated the importance of the H-bond network in the electrophilic reaction. These results highlight the functional role of the H-bond network in a closed conformation of the C-terminal helix to stabilize the bound substrate. The extremely low activity and reduction in Q251E's Kd suggest that interaction coupled with the H-bond network is crucial to locate the substrate for nucleophilic reaction.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Proteínas Mutantes/metabolismo , Mutação , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/genética , Catálise , Humanos , Cinética , Ligantes , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Conformação Proteica , Especificidade por Substrato
3.
Ecotoxicol Environ Saf ; 239: 113599, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567930

RESUMO

BACKGROUND: Benzo[a]pyrene (BaP), a toxic carcinogen, is associated with various adverse effects but is rarely discussed in muscle-related disorders. This study investigated in vitro and in vivo effects triggered by BaP exposure in muscles and hypothesized that exposure might induce conditions similar to sarcopenia due to the shared mechanism of oxidative stress. In vitro experiments used C2C12 mouse myoblasts to examine effects induced by BaP exposure in control (untreated) and BaP-treated (10 µM/ml) muscle cells. An established TNF-α-treated sarcopenia model was utilized to verify our results. In vivo experiments compared immunohistochemical staining of sarcopenia-related markers in rats exposed to clean air and polluted air. RESULTS: In C2C12 cells, after 2-72 h of BaP exposure, elevated mRNA and protein expressions were observed in aryl hydrocarbon receptor (AhR) and cytochrome P450 1A1, subsequently in ROS (NOX2 and NOX4) production, inflammatory cytokines (IL-6, TNF-α, and NF-kB), and proteins mediating apoptotic cell death (caspase-3 and PARP). Two myokines also altered mRNA and protein expressions akin to changes in sarcopenia, namely decreased irisin levels and increased myostatin levels. In addition, N-acetylcysteine, a well-known antioxidant, led to decrease in oxidative markers induced by BaP. The validation by TNF-α-treated sarcopenia model revealed comparable biological responses in either TNF-α or BaP treated C2C12 cells. In vivo experiments with rats exposed to air pollution showed increased expression of BaP, AhR, 8-hydroxydeoxyguanosine, and myostatin and decreased irisin expression in immunohistochemical staining. CONCLUSIONS: Our results suggest that BaP exerts deleterious effects on the muscle, leading to conditions indicative of sarcopenia. Antioxidant supplementation may be a treatment option for BaP-induced sarcopenia, but further validation studies are needed.


Assuntos
Benzo(a)pireno , Sarcopenia , Animais , Antioxidantes , Benzo(a)pireno/toxicidade , Fibronectinas , Camundongos , Músculos/metabolismo , Miostatina , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sarcopenia/induzido quimicamente , Fator de Necrose Tumoral alfa/genética
4.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430582

RESUMO

Dipeptidyl peptidase-4 inhibitor (DPP4i) is a widely used antidiabetic agent. Emerging cases of DPP4i-associated bullous pemphigoid (DBP), whose pathogenesis remains unclear, have been reported. Thus, a retrospective study was conducted from January 2016 to June 2021 to determine the clinical, laboratory, and histopathological features of DBP and idiopathic bullous pemphigoid (IBP). We set up in vitro experiments using vildagliptin-treated HaCaT keratinocytes to validate what we found by analyzing published RNA sequencing data about the genes related to the dermal-epidermal junction. We also observed IL-6 expression by HaCaT cells treated with vildagliptin. We enrolled 20 patients with DBP and 40 patients with IBP. The total Bullous Pemphigoid Disease Area Index (BPDAI) score was similar in both groups. However, the BPDAI score of erosions and blisters in DBP was significantly higher than that in IBP (24.6 vs. 16.68, p = 0.0189), and the score for urticaria and erythema was lower in DBP (12 vs. 19.05, p = 0.0183). The pathological features showed that the mean infiltrating eosinophil number per high-power field was significantly lower in DBP than in IBP (16.7 vs. 27.08, p = 0.023). The expression of LAMA3, LAMB3, LAMC2, DST, and COL17A1 decreased significantly in vildagliptin-treated human keratinocytes. On the other hand, IL-6, the hallmark cytokine of bullous pemphigoid (BP) severity, was found to be upregulated in HaCaT cells by vildagliptin. These experimental findings imply less of a requirement for eosinophil infiltration to drive the inflammatory cascades in DBP blistering. Both immunologic and non-immunologic pathways could be employed for the development of DBP. Our findings may help explain the higher incidence of non-inflammatory BP that was observed in DBP.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Penfigoide Bolhoso , Humanos , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Dipeptidil Peptidases e Tripeptidil Peptidases , Hipoglicemiantes , Interleucina-6/genética , Penfigoide Bolhoso/induzido quimicamente , Penfigoide Bolhoso/patologia , Estudos Retrospectivos , Vildagliptina/efeitos adversos
5.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499650

RESUMO

Hyperphosphatemia can occur as a result of reduced phosphate (Pi) excretion in cases of kidney dysfunction, which can induce muscle wasting and suppress myogenic differentiation. Higher Pi suppresses myogenic differentiation and promotes muscle atrophy through canonical (oxidative stress-mediated) and noncanonical (p62-mediated) activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. However, the crosstalk between myogenin and Nrf2/p62 and potential drug(s) for the regulation of myogenin expression needed to be addressed. In this study, we further identified that myogenin may negatively regulate Nrf2 and p62 protein levels in the mouse C2C12 muscle cell line. In the drug screening analysis, we identified N-acetylcysteine, metformin, phenformin, berberine, 4-chloro-3-ethylphenol, cilostazol, and cilomilast as ameliorating the induction of Nrf2 and p62 expression and reduction in myogenin expression that occur due to high Pi. We further elucidated that doxorubicin and hydrogen peroxide reduced the amount of myogenin protein mediated through the Kelch-like ECH-associated protein 1/Nrf2 pathway, differently from the mechanism of high Pi. The dual functional roles of L-ascorbic acid (L-AA) were found to be dependent on the working concentration, where concentrations below 1 mM L-AA reversed the effect of high Pi on myogenin and those above 1 mM L-AA had a similar effect of high Pi on myogenin when used alone. L-AA exacerbated the effect of hydrogen peroxide on myogenin protein and had no further effect of doxorubicin on myogenin protein. In summary, our results further our understanding of the crosstalk between myogenin and Nrf2, with the identification and verification of several potential drugs that can be applied in rescuing the decline of myogenin due to high Pi in muscle cells.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Ácido Ascórbico/farmacologia , Doxorrubicina/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Miogenina/genética , Miogenina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/fisiologia
6.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638796

RESUMO

Diosmin, a natural flavone glycoside acquired through dehydrogenation of the analogous flavanone glycoside hesperidin, is plentiful in many citrus fruits. Glioblastoma multiforme (GBM) is the most malignant primary brain tumor; the average survival time of GBM patients is less than 18 months after standard treatment. The present study demonstrated that diosmin, which is able to cross the blood-brain barrier, inhibited GBM cell growth in vitro and in vivo. Diosmin also impeded migration and invasion by GBM8401and LN229 GBM cells by suppressing epithelial-mesenchymal transition, as indicated by increased expression of E-cadherin and decreased expression of Snail and Twist. Diosmin also suppressed autophagic flux, as indicated by increased expression of LC3-II and p62, and induced cell cycle arrest at G1 phase. Importantly, diosmin did not exert serious cytotoxic effects toward control SVG-p12 astrocytes, though it did reduce astrocyte viability at high concentrations. These findings provide potentially helpful support to the development of new therapies for the treatment of GBM.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Diosmina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Diosmina/uso terapêutico , Feminino , Glioblastoma/fisiopatologia , Humanos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918312

RESUMO

Disulfiram (DSF), an irreversible aldehyde dehydrogenase inhibitor, is being used in anticancer therapy, as its effects in humans are known and less adverse than conventional chemotherapy. We explored the potential mechanism behind the cytotoxicity of DSF-Cu+/Cu2+ complexes in oral epidermoid carcinoma meng-1 (OECM-1) and human gingival epithelial Smulow-Glickman (SG) cells. Exposure to CuCl2 or CuCl slightly but concentration-dependently decreased cell viability, while DSF-Cu+/Cu2+ induced cell death in OECM-1 cells, but not SG cells. DSF-Cu+/Cu2+ also increased the subG1 population and decreased the G1, S, and G2/M populations in OECM-1 cells, but not SG cells, and suppressed cell proliferation in both OECM-1 and SG cells. ALDH enzyme activity was inhibited by CuCl and DSF-Cu+/Cu2+ in SG cells, but not OECM-1 cells. ROS levels and cellular senescence were increased in DSF-Cu+/Cu2+-treated OECM-1 cells, whereas they were suppressed in SG cells. DSF-Cu+/Cu2+ induced mitochondrial fission in OECM-1 cells and reduced mitochondrial membrane potential. CuCl2 increased but DSF- Cu2+ impaired oxygen consumption rates and extracellular acidification rates in OECM-1 cells. CuCl2 stabilized HIF-1α expression under normoxia in OECM-1 cells, and complex with DSF enhanced that effect. Levels of c-Myc protein and its phosphorylation at Tyr58 and Ser62 were increased, while levels of the N-terminal truncated form (Myc-nick) were decreased in DSF-Cu+/Cu2-treated OECM-1 cells. These effects were all suppressed by pretreatment with the ROS scavenger NAC. Overexpression of c-Myc failed to induce HIF-1α expression. These findings provide novel insight into the potential application of DSF-CuCl2 complex as a repurposed agent for OSCC cancer therapy.


Assuntos
Inibidores de Acetaldeído Desidrogenases/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Cobre/uso terapêutico , Dissulfiram/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Inibidores de Acetaldeído Desidrogenases/química , Inibidores de Acetaldeído Desidrogenases/farmacologia , Carcinoma de Células Escamosas/metabolismo , Cobre/química , Dissulfiram/química , Dissulfiram/farmacologia , Reposicionamento de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias Bucais/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/metabolismo
8.
J Cell Mol Med ; 24(6): 3669-3677, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32064746

RESUMO

Cardiovascular complications are leading causes of morbidity and mortality in patients with chronic kidney disease (CKD). CKD significantly affects cardiac calcium (Ca2+ ) regulation, but the underlying mechanisms are not clear. The present study investigated the modulation of Ca2+ homeostasis in CKD mice. Echocardiography revealed impaired fractional shortening (FS) and stroke volume (SV) in CKD mice. Electrocardiography showed that CKD mice exhibited longer QT interval, corrected QT (QTc) prolongation, faster spontaneous activities, shorter action potential duration (APD) and increased ventricle arrhythmogenesis, and ranolazine (10 µmol/L) blocked these effects. Conventional microelectrodes and the Fluo-3 fluorometric ratio techniques indicated that CKD ventricular cardiomyocytes exhibited higher Ca2+ decay time, Ca2+ sparks, and Ca2+ leakage but lower [Ca2+ ]i transients and sarcoplasmic reticulum Ca2+ contents. The CaMKII inhibitor KN93 and ranolazine (RAN; late sodium current inhibitor) reversed the deterioration in Ca2+ handling. Western blots revealed that CKD ventricles exhibited higher phosphorylated RyR2 and CaMKII and reduced phosphorylated SERCA2 and SERCA2 and the ratio of PLB-Thr17 to PLB. In conclusions, the modulation of CaMKII, PLB and late Na+ current in CKD significantly altered cardiac Ca2+ regulation and electrophysiological characteristics. These findings may apply on future clinical therapies.


Assuntos
Cálcio/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Benzilaminas/farmacologia , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Eletrocardiografia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ranolazina/farmacologia , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/patologia , Sulfonamidas/farmacologia
9.
J Biomed Sci ; 25(1): 81, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442142

RESUMO

BACKGROUND: Metformin is the most commonly used first-line medicine for type II diabetes mellitus. Acting via AMP-activated protein kinase, it has been used for more than 60 years and has an outstanding safety record. Metformin also offers protection against cancer, but its precise mechanisms remain unclear. METHODS: We first examined the cytotoxic effects of metformin in the HeLa human cervical carcinoma and ZR-75-1 breast cancer cell lines using assays of cell viability, cleaved poly-ADP-ribose polymerase, and Annexin V-fluorescein isothiocyanate apoptosis, as well as flow cytometric analyses of the cell cycle profile and reactive oxygen species (ROS). We later clarified the effect of metformin on p53 protein stability using transient transfection and cycloheximide chase analyses. RESULTS: We observed that metformin represses cell cycle progression, thereby inducing subG1 populations, and had induced apoptosis through downregulation of p53 protein and a target gene, differentiated embryo chondrocyte 1 (DEC1). In addition, metformin increased intracellular ROS levels, but N-acetyl cysteine, a ROS scavenger, failed to suppress metformin-induced apoptosis. Further results showed that metformin disrupted the electron transport chain and collapsed the mitochondrial membrane potential, which may be the cause of the elevated ROS levels. Examination of the mechanisms underlying metformin-induced HeLa cell death revealed that reduced stability of p53 in metformin-treated cells leads to decreases in DEC1 and induction of apoptosis. CONCLUSION: The involvement of DEC1 provides new insight into the positive or negative functional roles of p53 in the metformin-induced cytotoxicity in tumor cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação para Baixo/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Metformina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Células HeLa , Proteínas de Homeodomínio/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Mitocôndrias/fisiologia , Proteína Supressora de Tumor p53/genética
10.
Int J Med Sci ; 14(12): 1268-1275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104484

RESUMO

Background: Aquaporin 5 (AQP5) is most likely the primary water channel in the human nasal mucosa and acts as a key tight junction protein. The signaling cascades responsible for AQP5 regulation are still works in progress. Objective: This study sought to determine the effects of histamine and chlorpheniramine on AQP5 expression in human nasal epithelial cells (HNEpC) and to detect the signaling cascades responsible for these effects. Methods: HNEpC were cultured with four concentrations of histamine or chlorpheniramine in vitro. The sub-cellular distribution of AQP5 was explored using immunocytochemistry. The pharmacologic effects of histamine and chlorpheniramine on the expression of the phosphorylation of cyclic adenosine monophosphate-responsive element binding protein (p-CREB), the AQP5 and the NF-κB protein were examined using Western blotting. Results: AQP5 was found to be located in cell membrane and cytoplasm and present in every group without significant difference. Histamine inhibits the expression of AQP5 and p-CREB in HNEpC, while chlorpheniramine dose-dependently increases these protein levels with statistical significance. HNEpC treated with histamine and chlorpheniramine in turn showed the same trends as those intervened separately with these two drugs. Moreover, chlorpheniramine had the ability to reverse the inhibitory effect of histamine. Western blotting analysis revealed that after incubation with 10-4 M histamine, NF-κB protein was significantly heightened by 165% compared with the untreated control group. Again, such increase can be significantly reversed after chlorpheniramine treatment. Conclusions: The current study demonstrated that histamine inhibits CREB phosphorylation in HNEpC, which results in decreased AQP5 expression via activation of NF-κB pathway. Chlorpheniramine attenuates the inhibitory effect of histamine in p-CREB/AQP5 expression via suppression of NF-κB signal cascades. This observation could provide additional insight into the anti-inflammatory effects of H1-antihistamines that contribute to maintain airway surface liquid and mucosal defense.


Assuntos
Aquaporina 5/metabolismo , Clorfeniramina/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Histamina/metabolismo , Mucosa Nasal/efeitos dos fármacos , Células Cultivadas , Clorfeniramina/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Humanos , Masculino , NF-kappa B/metabolismo , Mucosa Nasal/citologia , Mucosa Nasal/metabolismo , Fosforilação , Cultura Primária de Células , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/patologia , Rinite Alérgica/cirurgia , Transdução de Sinais/efeitos dos fármacos
11.
Cell Oncol (Dordr) ; 46(5): 1301-1316, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37079187

RESUMO

Acute myeloid leukemia (AML) is a fast-growing and highly fatal blood cancer, and recent research has shown that targeting metabolism may be a promising therapeutic approach for treating AML. One promising target is the human mitochondrial NAD(P)+-dependent malic enzyme (ME2), which is involved in the production of pyruvate and NAD(P)H and the regulation of the NAD+/NADH redox balance. Inhibition of ME2 via silencing ME2 or utilizing its allosteric inhibitor disodium embonate (Na2EA) causes a decrease in pyruvate and NADH, leading to a decrease in producing ATP via cellular respiration and oxidative phosphorylation. ME2 inhibition also decreases NADPH levels, resulting in an increase in reactive oxygen species (ROS) and oxidative stress, which ultimately leads to cellular apoptosis. Additionally, ME2 inhibition reduces pyruvate metabolism and the biosynthetic pathway. ME2 silencing inhibits the growth of xenotransplanted human AML cells, and the allosteric ME2 inhibitor Na2EA demonstrates antileukemic activity against immune-deficient mice with disseminated AML. Both of these effects are a result of impaired energy metabolism in mitochondria. These findings suggest that the targeting ME2 may be an effective strategy for treating AML. Overall, ME2 plays an essential role in energy metabolism of AML cells, and its inhibition may offer a promising approach for AML treatment.


Assuntos
Leucemia Mieloide Aguda , NAD , Humanos , Camundongos , Animais , NAD/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Oxirredução , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Piruvatos
12.
Biochim Biophys Acta ; 1813(12): 2050-60, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864583

RESUMO

A zinc-finger protein which regulates apoptosis and cell cycle arrest 1 (Zac1) is a novel seven-zinc-finger protein that can bind a specific GC-rich DNA element and has intrinsic transactivation activity; therefore, its role as a transcription factor has been proposed. Zac1 not only promotes cell cycle arrest and apoptosis but also acts as a transcriptional cofactor for nuclear receptors and p53. In this study, we examined the functional roles of mouse Zac1 (mZac1) in HeLa cells treated with 12-O-tetradecanoylphorbol-13-acetate (PMA), a potent Activator protein 1 (AP-1) activator. At first, we found that mZac1 prolonged and enhanced PMA-induced AP-1 activity in both HeLa and HeLa/p53 shRNA cells. We further identified physical and functional interactions between mZac1 and AP-1 proteins (either c-Jun, c-Fos or both). Finally, we showed that Zac1 might function as a selective coactivator of AP-1, demonstrated by AP-1-dependent transcriptional activation of collagenase, c-Fos and p21(WAF1/Cip1) promoter activities. Identification of AP-1 as a specific target for Zac1-mediated transcriptional events not only establishes a direct link between these two pivotal regulatory proteins but also raises the possibility that Zac1 contributes to certain AP-1-dependent biological effects.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Proto-Oncogênicas c-fos/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Apoptose , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mutação/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
13.
Exp Cell Res ; 317(20): 2925-37, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-22001409

RESUMO

Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21(WAF1/Cip1) gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21(WAF1/Cip1) gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Histona Desacetilase 1/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ativação Transcricional , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Front Oncol ; 12: 925653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747833

RESUMO

Colorectal cancer (CRC) ranks third in the United States for incidence or mortality. Surgical resection is the primary treatment for patients at an early stage, while patients with advanced and metastatic CRC receive combined treatment with chemotherapy, radiotherapy, or targeted therapy. C-RAF plays a key role in maintaining clonogenic and tumorigenic capacity in CRC cells and it might be a potential therapeutic target for CRC. Sorafenib is a popular oral multi-kinase inhibitor, including a B-RAF inhibitor that targets the RAF-MEK-ERK pathway. Sorafenib, as a single agent, has tumor-suppressing efficacy, but its clinical application is limited due to many complex drug resistance mechanisms and side effects. GW5074 is one of the C-RAF inhibitors and has the potential to enhance the efficacy of existing cancer chemotherapies. In this study, we investigated whether the combination of sorafenib with GW5074 could reduce the dosage of sorafenib and enhance its tumor-suppressive effect in two CRC cell lines, HCT116 and LoVo cells. Our findings demonstrate that GW5074 can potentiate the cytotoxicity of sorafenib and dramatically reduce the half-maximal inhibitory concentration (IC50) dose of sorafenib from 17 and 31 µM to 0.14 and 0.01 µM in HCT116 and LoVo cells, respectively. GW5074, similar to sorafenib, suppressed the cellular proliferation and induced cellular apoptosis and cytosolic ROS, but had no further enhancement on the above-mentioned effects when combined with sorafenib. The synergistic effects of GW5074 and sorafenib were mainly found in mitochondrial functions, including ROS generation, membrane potential disruption, and fission-fusion dynamics, which were examined by using the flow cytometry analysis. In summary, the C-RAF inhibitor GW5074 might potentiate the cytotoxicity of the B-RAF inhibitor sorafenib mediated through mitochondrial dysfunctions, suggesting that GW5074 potentially serves as a sensitizer for sorafenib application to reduce the risk of drug resistance of CRC treatment. Our findings also provide novel insights on using C-RAF inhibitors combined with sorafenib, the current CRC therapeutic drug choice, in CRC treatment.

15.
Front Oncol ; 12: 843742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677156

RESUMO

Hepatocellular carcinoma (HCC) is the primary histological subtype of liver cancer, and its incidence rates increase with age. Recently, systemic therapies, such as immune checkpoint inhibitors, monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been more beneficial than conventional therapies for treating HCC. Nonetheless, the prognosis of late-stage HCC remains dismal because of its high recurrence rates, even with substantial advances in current therapeutic strategies. A new treatment, such as a combination of current systemic therapies, is urgently required. Therefore, we adopted a repurposing strategy and tried to combine ascorbate with TKIs, including lenvatinib and regorafenib, in HepG2 and Hep3B cells. We investigated the potential functional impact of pharmacological concentrations of ascorbate on the cell-cycle profiles, mitochondrial membrane potential, oxidative response, synergistic effects of lenvatinib or regorafenib, and differential responsiveness between HepG2 and Hep3B cells. Our data suggest that the relative level of cell density is an important determinant for ascorbate cytotoxicity in HCC. Furthermore, the data also revealed that the cytotoxic effect of pharmacological concentrations of ascorbate might not be mediated via our proposed elevation of ROS generation. Ascorbate might be involved in redox homeostasis to enhance the efficacy of TKIs in HepG2 and Hep3B cells. The synergistic effects of ascorbate with TKIs (lenvatinib and regorafenib) support their potential as an adjuvant for HCC targeted TKI therapy. This research provides a cheap and new combinatory therapy for HCC treatment.

16.
J Biochem ; 167(3): 315-322, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722428

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a key enzyme in tyrosine catabolism, catalysing the oxidation of 4-hydroxyphenylpyruvate to homogentisate. Genetic deficiency of this enzyme causes type III tyrosinaemia. The enzyme comprises two barrel-shaped domains formed by the N- and C-termini, with the active site located in the C-terminus. This study investigated the role of the N-terminus, located at the domain interface, in HPPD activity. We observed that the kcat/Km decreased ∼8-fold compared with wild type upon removal of the 12 N-terminal residues (ΔR13). Interestingly, the wild-type level of activity was retained in a mutant missing the 17 N-terminal residues, with a kcat/Km 11-fold higher than that of the ΔR13 mutant; however, the structural stability of this mutant was lower than that of wild type. A 2-fold decrease in catalytic efficiency was observed for the K10A and E12A mutants, indicating synergism between these residues in the enzyme catalytic function. A molecular dynamics simulation showed large RMS fluctuations in ΔR13 suggesting that conformational flexibility at the domain interface leads to lower activity in this mutant. These results demonstrate that the N-terminus maintains the stability of the domain interface to allow for catalysis at the active site of HPPD.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Catálise , Domínio Catalítico , Dicroísmo Circular , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ácidos Fenilpirúvicos/química , Conformação Proteica , Domínios Proteicos/genética , Tirosina/química
17.
Eur J Pharmacol ; 859: 172548, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323224

RESUMO

Due to the radiosensitivity of the airway epithelium, radiation-induced sinusitis or bronchitis is not uncommon, and makes mitigation of resulting inflammatory airway diseases a principal goal of many investigations. This study examined whether Ovatodiolide (Ova) sensitizes the human metastatic nasopharyngeal cancer (NPC) cell line, NPC-BM2, to irradiation using viability, clonogenicity and Western blot assays. Concurrently, we used varying concentrations of histamine and/or Ova to determine the anti-inflammatory potential of Ovatodiolide on normal bronchus epithelial BEAS-2B cells, as well as on the subcellular distribution of Aquaporin 5 (AQP5) and expression levels of p-CREB, AQP5, p38 MAPK, NF-κB, PI3K, Akt and ERK proteins. We demonstrated that Ova in synergism with irradiation inhibited NPC-BM2 cell viability and suppressed their clonogenicity. Immunofluorescence analysis revealed low-dose (≤ 2.5 µM) Ova reversed histamine-induced suppression of AQP5 expression, and abrogated histamine-enhanced NF-κB nuclear translocation, indicating Ova modulates the p38 MAPK/NF-κB signaling pathway and elicits p-CREB/AQP5-mediated antihistamine effects. Similarly, Ova deregulates the PI3K/Akt/ERK signaling in BEAS-2B cells, suggesting its cytoprotective potential. In conclusion, this study highlights the radio-sensitizing anticancer efficacy of Ova in human metastatic NPC cells, as well as its putative cytoprotective role in normal bronchial cells, for airway surface liquid maintenance and homeostasis during or after radiotherapy.


Assuntos
Aquaporina 5/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diterpenos/farmacologia , Células Epiteliais/efeitos dos fármacos , Carcinoma Nasofaríngeo/patologia , Tolerância a Radiação/efeitos dos fármacos , Brônquios/citologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/radioterapia , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Oncotarget ; 9(65): 32478-32495, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30197757

RESUMO

Interleukin (IL)-11, a member of the IL-6 family of cytokines, exerts pleiotropic effects under normal and various disease conditions. We assessed IL-11 expression regulation and the IL-11/IL-6 ratio in osteoarthritis (OA) to better guide clinical therapeutic decision-making. Our findings suggest that Zac1, a zinc finger protein that regulates apoptosis and cell cycle arrest, is a transcription factor regulating IL-11 expression. Zac1 overexpression or knockdown respectively induced or suppressed IL-11 expression in HeLa cells. Zac1 acted synergistically with AP-1, human papillomavirus E2, and hypoxia inducible factor 1 alpha (HIF1α). IL-11 expression under various conditions, including hypoxia or treatment with phorbol 12-myristate 13-acetate or copper sulfate. Recombinant IL-11-induced phosphorylation of signal transducer and activator of transcription 3 at tyrosine 705 was reduced in a dose-dependent manner in HeLa cells. Cross-talk between Zac1, IL-11, p53, and suppressor of cytokine signaling 3 was differentially affected by copper sulfate, digoxin, and caffeine. Finally, aggressive vs. conventional treatment of OA patients was primarily determined by IL-6 levels. However, we suggest that OA patients with higher IL-11 levels may respond well to conventional treatments, even in the presence of high IL-6.

19.
Oncotarget ; 9(17): 13390-13406, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568365

RESUMO

Amiodarone is a widely used class III antiarrhythmic agent which prolongs the action potential and refractory period by blockage of several types of myocardial potassium channels. Emerging evidence suggests that amiodarone sensitize tumor cells in response to chemotherapy. Nevertheless, little is known about the underlying molecular mechanism. To gain further insight, we demonstrated that amiodarone accumulated the population of a premature termination codon-containing isoform of serine and arginine rich splicing factor 3 (SRSF3-PTC) without increasing alternative spliced p53 beta isoform. Amiodarone enhanced reactive oxygen species production and increased cell apoptosis, whereas reduced DNA damage. Moreover, amiodarone suppressed miR-224 and increased its target COX-2 expression. Taken together, our results suggested amiodarone caused cancer cell death might be through increased SRSF3-PTC and miR-224 reduction in a p53-independent manner.

20.
Int Forum Allergy Rhinol ; 8(1): 64-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083535

RESUMO

BACKGROUND: Cholinergic stimulation plays a major role in inflammatory airway diseases. However, its role in airway surface liquid homeostasis and aquaporin 5 (AQP5) regulation remains unclear. In this study we sought to determine the effects of methacholine and dexamethasone on AQP5 expression in human nasal epithelial cells (HNEpC). METHODS: HNEpC were cultured with methacholine or dexamethasone at 4 concentrations in vitro. The subcellular distribution of AQP5 was explored using immunocytochemistry. The pharmacologic effects of methacholine and dexamethasone on the expression of the phosphorylation of cyclic adenosine monophosphate-responsive element binding protein (p-CREB), AQP5, and nuclear factor-kappaB (NF-κB) were examined using Western blotting. RESULTS: AQP5 was found to be located in cell membrane and cytoplasm and present in every group without a statistically significant difference. Methacholine inhibited expression of AQP5 and p-CREB in HNEpC, whereas dexamethasone increased these protein levels dose-dependently in a statistically significant manner. In turn, HNEpC treated with methacholine and dexamethasone showed the same trends as those intervened separately with these 2 drugs. Moreover, dexamethasone had the ability to reverse the inhibitory effect of methacholine. Western blotting revealed that, after incubation with 10-4 mol/L methacholine, NF-κB increased significantly, by 186.67%, compared with the untreated control group. Again, such an increase could be significantly reversed after dexamethasone treatment. CONCLUSION: NF-κB activation is important for inhibition of p-CREB/AQP5 expression after methacholine intervention, and dexamethasone adjusts it to the opposite side. This observation could provide additional insight into the anti-inflammatory effects of glucocorticoids that contribute to maintaining airway surface liquid and mucosal defense.


Assuntos
Aquaporina 5/metabolismo , Dexametasona/farmacologia , Células Epiteliais/efeitos dos fármacos , Glucocorticoides/farmacologia , NF-kappa B/metabolismo , Mucosa Nasal/citologia , Células Cultivadas , Regulação para Baixo , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Cloreto de Metacolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA