Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Xenobiotica ; 51(1): 105-114, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32820679

RESUMO

Mycophenolic acid (MPA) has become a cornerstone of immunosuppressive therapy, in particular for transplant patients. In the gastrointestinal tract, the liver and the kidney, MPA is mainly metabolized into phenyl-ß-d glucuronide (MPAG). Knowledge about the interactions between MPA/MPAG and membrane transporters is still fragmented. The aim of the present study was to explore these interactions with the basolateral hepatic MRP4 transporter. The inhibition of the MRP4-driven transport by various drugs which can be concomitantly prescribed was also evaluated. In vitro experiments using vesicles overexpressing MRP4 showed an ATP-dependent transport of MPAG driven by MRP4 (Michaelis-Menten constant of 233.9 ± 32.8 µM). MPA was not effluxed by MRP4. MRP4-mediated transport of MPAG was inhibited (from -43% to -84%) by ibuprofen, cefazolin, cefotaxime and micafungin. An in silico approach based on molecular docking and molecular dynamics simulations rationalized the mode of binding of MPAG to MRP4. The presence of the glucuronide moiety in MPAG was highlighted as key, being prone to make electrostatic and H-bond interactions with specific residues of the MRP4 protein chamber. This explains why MPAG is a substrate of MRP4 whereas MPA is not.


Assuntos
Glucuronídeos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ácido Micofenólico/análogos & derivados , Transporte Biológico , Hepatócitos/metabolismo , Humanos , Rim/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Ácido Micofenólico/metabolismo
2.
Langmuir ; 35(45): 14603-14615, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619039

RESUMO

ß-Lapachone (ß-Lap) is a promising anticancer drug whose applications have been limited so far because of its poor solubility and stability. Its encapsulation in liposomes has been proposed to overcome these issues. However, surface pressure measurements show that ß-Lap exhibits atypical interfacial behavior when mixed with lipids. Although the drug does not seem to be retained in lipid monolayers as deduced from the π-A isotherms, small changes in compressibility moduli suggest that ß-Lap actually interacts with lipids, either disorganizing or rigidifying their monolayers. Thermal and structural analyses of lipid bilayers confirm the existence of ß-Lap/lipid interactions and show that the drug inserts between hydrophobic chains, close to the polar headgroup in DPPC bilayers and deeper in the acyl chains in POPC bilayers. Molecular dynamics simulations allow a comprehensive description of the drug position and orientation in DOPC and POPC bilayers in the presence or absence of cholesterol.


Assuntos
Bicamadas Lipídicas/química , Naftoquinonas/química , Fosfatidilcolinas/química , Tamanho da Partícula , Propriedades de Superfície
3.
Pharmacol Res ; 111: 471-486, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27378566

RESUMO

Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; ß-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.


Assuntos
Membrana Celular/metabolismo , Preparações Farmacêuticas/metabolismo , Transporte Biológico , Simulação por Computador , Citoplasma/metabolismo , Resistência a Medicamentos , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo
4.
ACS Appl Mater Interfaces ; 16(26): 32971-32982, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885044

RESUMO

We report herein the synthesis of three detergents bearing a perfluorinated cyclohexyl group connected through a short, hydrogenated spacer (i.e., propyl, butyl, or pentyl) to a ß-maltoside polar head that are, respectively, called FCymal-3, FCymal-4, and FCymal-5. Increasing the length of the spacer decreased the critical micellar concentration (CMC), as demonstrated by surface tension (SFT) and isothermal titration calorimetry (ITC), from 5 mM for FCymal-3 to 0.7 mM for FCymal-5. The morphology of the micelles was studied by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and small-angle X-ray scattering (SAXS), indicating heterogeneous rod-like shapes. While micelles of FCymal-3 and -4 have similar hydrodynamic diameters of ∼10 nm, those of FCymal-5 were twice as large. We also investigated the ability of the detergents to solubilize lipid membranes made of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC). Molecular modeling indicated that the FCymal detergents generate disorder in lipid bilayers, with FCymal-3 being inserted more deeply into bilayers than FCymal-4 and -5. This was experimentally confirmed using POPC vesicles that were completely solubilized within 2 h with FCymal-3, whereas FCymal-5 required >8 h. A similar trend was noticed for the direct extraction of membrane proteins from E. coli membranes, with FCymal-3 being more potent than FCymal-5. An opposite trend was observed in terms of stabilization of the two model membrane proteins bacteriorhodopsin (bR) and SpNOX. In all three FCymal detergents, bR was stable for at least 2 months with no signs of aggregation. However, while the structural integrity of bR was fully preserved in FCymal-4 and -5, minor bleaching was observed in FCymal-3. Similarly, SpNOX exhibited the least activity in FCymal-3 and the highest activity in FCymal-5. By combining solubilizing and stabilizing potency, FCymal detergents push forward our expectations of the usefulness of fluorinated detergents for handling and investigating membrane proteins.


Assuntos
Detergentes , Interações Hidrofóbicas e Hidrofílicas , Micelas , Detergentes/química , Halogenação , Escherichia coli/efeitos dos fármacos , Fosfatidilcolinas/química , Bicamadas Lipídicas/química , Bacteriorodopsinas/química
5.
Biochim Biophys Acta Biomembr ; 1865(3): 184120, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669638

RESUMO

Passive permeation events across biological membranes are determining steps in the pharmacokinetics of xenobiotics. To reach an accurate and rapid prediction of membrane permeation coefficients of drugs is a complex challenge, which can efficiently support drug discovery. Such predictions are indeed highly valuable as they may guide the selection of potential leads with optimum bioavailabilities prior to synthesis. Theoretical models exist to predict these coefficients. Many of them are based on molecular dynamics (MD) simulations, which allow calculation of permeation coefficients through the evaluation of both the potential of mean force (PMF) and the diffusivity profiles. However, these simulations still require intensive computational efforts, and novel methodologies should be developed and benchmarked. Free energy perturbation (FEP) method was recently shown to estimate PMF with a significantly reduced computational cost compared to the adaptive biasing force method. This benchmarking was achieved with small molecules, namely short-chain alcohols. Here, we show that to estimate the PMF of bulkier, drug-like xenobiotics, conformational sampling is a critical issue. To reach a sufficient sampling with FEP calculations requires a relatively long time-scale, which can lower the benefits related to the computational gain. In the present work, the Accelerated Weight Histogram (AWH) method was employed for the first time in all-atom membrane models. The AWH-based protocol, named MemCross, appears affordable to estimate PMF profiles of a series of drug-like xenobiotics, compared to other enhanced sampling methods. The continuous exploration of the crossing pathway by MemCross also allows modeling subdiffusion by computing fractional diffusivity profiles. The method is also versatile as its input parameters are largely insensitive to the molecule properties. It also ensures a detailed description of the molecule orientations along the permeation pathway, picturing all intermolecular interactions at an atomic resolution. Here, MemCross was applied on a series of 12 xenobiotics, including four weak acids, and a coherent structure-activity relationship was established.


Assuntos
Simulação de Dinâmica Molecular , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Entropia , Permeabilidade
6.
Sci Rep ; 12(1): 7057, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488116

RESUMO

The human SLC22A6/OAT1 plays an important role in the elimination of a broad range of endogenous substances and xenobiotics thus attracting attention from the pharmacological community. Furthermore, OAT1 is also involved in key physiological events such as the remote inter-organ communication. Despite its significance, the knowledge about hOAT1 structure and the transport mechanism at the atomic level remains fragmented owing to the lack of resolved structures. By means of protein-threading modeling refined by µs-scaled Molecular Dynamics simulations, the present study provides the first robust model of hOAT1 in outward-facing conformation. Taking advantage of the AlphaFold 2 predicted structure of hOAT1 in inward-facing conformation, we here provide the essential structural and functional features comparing both states. The intracellular motifs conserved among Major Facilitator Superfamily members create a so-called "charge-relay system" that works as molecular switches modulating the conformation. The principal element of the event points at interactions of charged residues that appear crucial for the transporter dynamics and function. Moreover, hOAT1 model was embedded in different lipid bilayer membranes highlighting the crucial structural dependence on lipid-protein interactions. MD simulations supported the pivotal role of phosphatidylethanolamine components to the protein conformation stability. The present model is made available to decipher the impact of any observed polymorphism and mutation on drug transport as well as to understand substrate binding modes.


Assuntos
Bicamadas Lipídicas , Transportadores de Ânions Orgânicos , Transporte Biológico , Humanos , Simulação de Dinâmica Molecular , Proteína 1 Transportadora de Ânions Orgânicos , Conformação Proteica
7.
Biochim Biophys Acta Biomembr ; 1861(8): 1489-1501, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247162

RESUMO

Free radical scavengers like α-phenyl-N-tert-butylnitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) have been widely used as protective agents in various biomimetic and biological models. A series of three amphiphilic Trolox and PBN derivatives have been designed by adding to those molecules a perfluorinated chain as well as a sugar group in order to render them amphiphilic. In this work, we have studied the interactions between these derivatives and lipid membranes to understand how they influence their ability to prevent membrane lipid oxidation. We showed the derivatives better inhibited the AAPH-induced oxidation of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC) small unilamellar vesicles (SUVs) than the parent compounds. One of the derivatives, bearing both PBN and Trolox moieties on the same fluorinated carrier, exhibited a synergistic antioxidant effect by delaying the oxidation process. We next investigated the ability of the derivatives to interact with DLiPC membranes in order to better understand the differences observed regarding the antioxidant properties. Surface tension and fluorescence spectroscopy experiments revealed the derivatives exhibited the ability to form monolayers at the air/water interface and spontaneously penetrated lipid membranes, underlying pronounced hydrophobic properties in comparison to the parent compounds. We observed a correlation between the hydrophobic properties, the depth of penetration and the antioxidant properties and showed that the location of these derivatives in the membrane is a key parameter to rationalize their antioxidant efficiency. Molecular dynamics (MD) simulations supported the understanding of the mechanism of action, highlighting various key physical-chemical descriptors.


Assuntos
Antioxidantes/farmacologia , Cromanos/química , Lipídeos de Membrana/química , Óxidos de Nitrogênio/química , Sinergismo Farmacológico , Flúor/química , Peroxidação de Lipídeos , Membranas Artificiais , Oxirredução
8.
Neuropharmacology ; 139: 98-116, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30018000

RESUMO

Traumatic injuries to peripheral nerves are frequent, however, specific pharmacological treatments are currently lacking. Curcumin has antioxidant, anti-inflammatory and neuroprotective properties but high oral doses are required for therapeutic use, particularly due to its low bioavailability. The aim of the present study was to investigate the effects of local and continuous treatment using low curcumin doses on functional recovery and nerve regeneration after rat sciatic nerve crush (SNC). Curcumin was administered by osmotic pumps with a catheter delivering the drug at the injury site (0.2 mg/day for 4 weeks). Functionally, early improvements in mechanical sensitivity, finger spacing of the injured paw, skilful walking and grip strength were observed in curcumin-treated animals. The curcumin treatment increased expression of compact myelin proteins (MPZ and PMP22), myelin sheath thickness and, correspondingly, increased motor and sensitive nerve conduction velocity. Microscopic analysis of gastrocnemius muscle indicated a curcumin-induced decrease in neurogenic lesions. Curcumin treatment reduced the production of reactive oxygen species (ROS) (which were notably produced by macrophages), lipid peroxidation and increased expression of transcription factor Nrf2. In silico analyses indicated that curcumin combines all the characteristics required to be an efficient lipid peroxidation inhibitor at the heart of biological membranes, hence protecting their degradation due to ROS. This antioxidant capacity is likely to contribute to the beneficial effects of curcumin after SNC injury. These results demonstrate that, when administrated locally, low doses of curcumin represent a promising therapy for peripheral nerve regeneration.


Assuntos
Antioxidantes/farmacologia , Lesões por Esmagamento/tratamento farmacológico , Curcumina/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Nervo Isquiático/lesões , Animais , Células Cultivadas , Lesões por Esmagamento/patologia , Lesões por Esmagamento/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Simulação de Dinâmica Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Fator 2 Relacionado a NF-E2/metabolismo , Condução Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Remielinização/fisiologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia
9.
Eur J Med Chem ; 127: 263-274, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28068598

RESUMO

A series of antioxidants was designed and synthesized based on conjugation of the hepatoprotective flavonolignan silybin with l-ascorbic acid, trolox alcohol or tyrosol via a C12 aliphatic linker. These hybrid molecules were prepared from 12-vinyl dodecanedioate-23-O-silybin using the enzymatic regioselective acylation procedure with Novozym 435 (lipase B) or with lipase PS. Voltammetric analyses showed that the silybin-ascorbic acid conjugate exhibited excellent electron donating ability, in comparison to the other conjugates. Free radical scavenging, antioxidant activities and cytoprotective action were evaluated. The silybin-ascorbic acid hybrid exhibited the best activities (IC50 = 30.2 µM) in terms of lipid peroxidation inhibition. The promising protective action of the conjugate against lipid peroxidation can be attributed to modulated electron transfer abilities of both the silybin and ascorbate moieties, but also to the hydrophobic C12 linker facilitating membrane insertion. This was supported experimentally and theoretically by density functional theory (DFT) and molecular dynamics (MD) calculations. The results presented here can be used in the further development of novel multipotent antioxidants and cytoprotective agents, in particular for substances acting at an aqueous/lipid interface.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Flavonolignanos/química , Flavonolignanos/farmacologia , Lipase/metabolismo , Antioxidantes/metabolismo , Membrana Celular/metabolismo , Citoproteção/efeitos dos fármacos , Transporte de Elétrons , Enzimas Imobilizadas , Flavonolignanos/metabolismo , Proteínas Fúngicas , Células Hep G2 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Silibina , Silimarina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA