Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 110(4): 739-749, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206868

RESUMO

The occurrence of unexplained recurrent spontaneous abortion (URSA) is closely related to immune system disorders, however, the underlying mechanisms remain unclear. The purpose of this study was to investigate the expression of GRIM-19 in URSA and the possible pathogenesis of URSA according to macrophage polarization. Here, we showed that GRIM-19 was downregulated in the uterine decidual macrophages of patients with URSA and that GRIM-19 downregulation was accompanied by increased M1 macrophage polarization. Furthermore, the expression levels of glycolytic enzymes were substantially enhanced in the uterine decidual macrophages of URSA patients, and glycolysis in THP-1-derived macrophages was further enhanced by the downregulation of GRIM-19. Additionally, the increase of M1 macrophages resulting from the loss of GRIM-19 was significantly reversed in cells treated with 2-deoxy-D-glucose (2-DG, an inhibitor of glycolysis). To provide more direct evidence, GRIM-19 deficiency was shown to promote macrophage polarization to the M1 phenotype in GRIM-19+/- mouse uteri. Overall, our study provides evidence that GRIM-19 deficiency may play a role in regulating macrophage polarization in URSA, and that glycolysis may participate in this process.


Assuntos
Aborto Habitual , Aborto Espontâneo , Macrófagos , NADH NADPH Oxirredutases , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Habitual/genética , Aborto Espontâneo/genética , Macrófagos/metabolismo , Fenótipo , Glicólise , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo
2.
BMC Pregnancy Childbirth ; 24(1): 559, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192200

RESUMO

BACKGROUND: Study objectives included the development of a practical nomogram for predicting live birth following frozen-thawed embryo transfers in ovulatory women. METHODS: Totally, 2884 patients with regular menstrual cycles in our center were retrospectively enrolled. In an 8:2 ratio, we randomly assigned patients to training and validation cohorts. Then we identified risk factors by multivariate logistic regression and constructed nomogram. Finally, receiver operating characteristic curve analysis, calibration curve and decision curve analysis were performed to assess the calibration and discriminative ability of the nomogram. RESULTS: We identified five variables which were related to live birth, including age, anti-Müllerian hormone (AMH), protocol of frozen-thawed embryo transfer (FET), stage of embryos and amount of high-quality embryos. We then constructed nomograms that predict the probabilities of live birth by using those five parameters. Receiver operating characteristic curve analysis (ROC) showed that the area under the curve (AUC) for live birth was 0.666 (95% CI: 0.644-0.688) in the training cohort. The AUC in the subsequent validation cohorts was 0.669 (95% CI, 0.625-0.713). The clinical practicability of this nomogram was demonstrated through calibration curve analysis and decision curve analysis. CONCLUSIONS: Our nomogram provides a visual and simple tool in predicting live birth in ovulatory women who received FET. It could also provide advice and guidance for physicians and patients on decision-making during the FET procedure.


Assuntos
Criopreservação , Transferência Embrionária , Nascido Vivo , Nomogramas , Humanos , Feminino , Transferência Embrionária/estatística & dados numéricos , Transferência Embrionária/métodos , Nascido Vivo/epidemiologia , Gravidez , Adulto , Estudos Retrospectivos , Hormônio Antimülleriano/sangue , Curva ROC , Ovulação , Fatores de Risco , Fertilização in vitro/estatística & dados numéricos , Fertilização in vitro/métodos
3.
Ecotoxicol Environ Saf ; 284: 116880, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142115

RESUMO

Past studies have observed that BHPF induces multi-organ toxicity, however, whether it induces damage to male reproductive system and the specific mechanism remains unclear. In the present study, male mice were given 0, 2, 10 or 50 mg/kg/day of BHPF by gavage for 35 days to observe its effect on reproductive organ and sperm quality. The results indicated that BHPF decreased sperm count and sperm motility in a dose-dependent manner. Besides, our results demonstrated that BHPF triggered the proliferation inhibition and cell death of germ cells in vivo and in vitro. Also, BHPF reduced the expression of function markers for germ cells, Sertoli cells, and Leydig cells, indicating its damage to function of testis cells. Simultaneously, testicular microenvironment was found to be altered by BHPF, as presented with declined testosterone level and decreased expression of local microenvironment regulators. Overall, our findings indicated the detrimental effects of BHPF on male reproductive function in mice, suggesting testicular function and local microenvironment disturbance as mechanism underlying testicular damage.

4.
Ecotoxicol Environ Saf ; 284: 116878, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142116

RESUMO

BACKGROUND: 2-ethylhexyldiphenyl phosphate (EHDPP) was used widespread in recent years and it was reported to impair reproductive behaviors and decrease fertility in male Japanese medaka. However, whether EHDPP causes spermatogenesis disturbance remains uncertain. OBJECTIVES: We aimed to study the male reproductive toxicity of EHDPP and its related mechanism. METHODS: Human spermatocyte cell line GC-2 was treated with 10 µM, 50 µM or 100 µM EHDPP for 24 h. Male CD-1 mice aged 6 weeks were given 1, 10, or 100 mg/kg/d EHDPP daily for 42 days and then euthanized to detect sperm count and motility. Proliferation, apoptosis, oxidative stress was detected in mice and cell lines. Metabolome and transcriptome were used to detect the related mechanism. Finally, anti-oxidative reagent N-Acetylcysteine was used to detect whether it could reverse the side-effect of EHDPP both in vivo and in vitro. RESULTS: Our results showed that EHDPP inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Metabolome and transcriptome showed that nucleotide metabolism disturbance and DNA damage was potentially involved in EHDPP-induced reproductive toxicity. Finally, we found that excessive ROS production caused DNA damage and mitochondrial dysfunction; NAC supplement reversed the side effects of EHDPP such as DNA damage, proliferation inhibition, apoptosis and decline in sperm motility. CONCLUSION: ROS-evoked DNA damage and nucleotide metabolism disturbance mediates EHDPP-induced germ cell proliferation inhibition and apoptosis, which finally induced decline of sperm motility.

5.
Ecotoxicol Environ Saf ; 271: 116000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266359

RESUMO

The decline in male fertility caused by environmental pollutants has attracted worldwide attention nowadays. Tris(2-chloroisopropyl) phosphate (TCPP) is a chlorine-containing organophosphorus flame retardant applied in many consumer products and has multiple side effects on health. However, whether TCPP impairs spermatogenesis remains unclear. In this study, we found that TCPP reduced the sperm motility and blastocyst formation, inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Moreover, TCPP induced imbalance of oxidant and anti-oxidant, DNA damage and mitochondrial dysfunction, thus induced abnormal spermatogenesis. In this process, p53 signaling pathway was activated and N-acetylcysteine treatment partially alleviated the side effects of TCPP, including decrease of sperm motility, activation of p53 signaling pathway and DNA damage. Finally, our study verified that TCPP elevated reactive oxygen species (ROS), decreased mitochondrial membrane potential and induced apoptosis in human semen samples. Overall, ROS mediated TCPP-induced germ cell proliferation inhibition and apoptosis, which finally led to the decline of sperm motility.


Assuntos
Retardadores de Chama , Fosfatos , Masculino , Camundongos , Humanos , Animais , Fosfatos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Organofosfatos/toxicidade , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Compostos Organofosforados , Retardadores de Chama/toxicidade , Motilidade dos Espermatozoides , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , Dano ao DNA
6.
Ecotoxicol Environ Saf ; 271: 116003, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286103

RESUMO

Cresyl Diphenyl Phosphate (CDP), as a novel organophosphate esters (OPEs), achieves widely used and exposed in multiple industries. However, its male reproductive toxicity and underlying mechanism remains unclear. In vivo, male mice were gavaged with CDP (0, 4, 20, or 100 mg/kg/d) for 8 weeks. And we treated TM3, TM4 and GC-2 cells with 0, 10, 25, and 50 µM CDP for 24 h to detect its reproductive toxicity effect in vitro. In our study, we revealed that CDP inhibited proliferation and induced apoptosis in mice testis and GC-2 cells, thereby leading to the decreased sperm quality. In mechanism, CDP trigger the oxidative stress and ROS production, thus partially causing DNA damage and cell apoptosis. Moreover, CDP exposure causes injury to Ledyig cells and Sertoli cells, thus disturbing the testicular microenvironment and inhibiting spermatogonia proliferation. In conclusion, this research reveals multiple adverse impacts of CDP on the male reproductive system and calls for further study of the toxicological effects of CDP on human health.


Assuntos
Compostos de Bifenilo , Sêmen , Testículo , Humanos , Masculino , Animais , Camundongos , Espermatozoides , Espermatogênese , Fosfatos/farmacologia
7.
J Formos Med Assoc ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39138105

RESUMO

BACKGROUND: Purpose: High-flow nasal cannula (HFNC) has many benefits in various clinical conditions. The original hypothesis suggests that the high and constant fraction of inspired oxygen (FiO2) is one of the main physiological effects. However, increasing evidence shows that there is a gap between the actual FiO2 and administered FiO2. We aimed to determine the actual FiO2 under different respiratory conditions and develop a regression model using a spontaneous breathing lung model. METHODS: A spontaneous breathing simulation model was built using an airway manikin and a model lung. The FiO2 was measured under different respiratory conditions with varying tidal volumes and respiratory and HFNC flow rates. The relationships between the respiratory parameters and actual FiO2 were determined and used to build the predictive model. RESULTS: The actual FiO2 was negatively correlated with respiratory rate and tidal volume and positively correlated with HFNC flow. The regression model could not be developed using simple respiratory parameters. Therefore, we introduced a new variable, defined as flow ratio, which equaled the HFNC flow divided by inspiratory flow. Our equation demonstrated that the actual FiO2 was mainly determined by the flow ratio in a non-linear relationship. Accordingly, a flow ratio greater than 1 did not ensure a constant high FiO2, whereas a flow ratio >1.435 could produce FiO2 >0.9. CONCLUSION: The FiO2 during HFNC was not constant even at sufficiently high oxygen flow compared with inspiratory flow. The predictive model showed that the actual FiO2 was mainly determined by the flow ratio.

8.
J Obstet Gynaecol Res ; 49(11): 2734-2745, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37533344

RESUMO

PURPOSE: Numerous advancements have been introduced into the field of assisted reproductive technology (ART) in the past four decades. Nonetheless, implantation failure is still a key limiting step for a successful pregnancy. Building of endometrial receptivity (ER) is essential for successful implantation. However, the fundamental biological processes and mechanisms of ER remain elusive. Our study investigates the function of hypoxia inducible factor-1α (HIF-1α) during ER establishment and shed lights on the novel molecular mechanism by which HIF-1α regulates ER-related gene expression network. METHODS: Levels of HIF-1α, homeobox A10 (HOXA10), insulin-like growth factor-binding protein 1 (IGFBP1), pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA) in endometrial tissues were measured via real-time PCR, immunoblotting and immunohistochemistry. The correlation between HIF-1α and HOXA10, IGFBP1, PKM2, LDHA were analyzed separately. Ishikawa cells were treated with vector HIF-1α, HIF-1α-siRNA, and PKM2-siRNA. After transfection, the levels of HOXA10, IGFBP1, LDHA, and PKM2 were measured via real-time PCR and immunoblotting, and the lactate concentrations and cell migration of Ishikawa cells were measured. RESULTS: Levels of HIF-1α, IGFBP1, HOXA10, LDHA, and PKM2 were significantly decreased in recurrent implantation failure (RIF) patients and levels of HOXA10, IGFBP1, PKM2, and LDHA were correlated with HIF-1α in endometrium. Then in a cellular model established by HIF-1α vector and HIF-1α-siRNA, the expression of HOXA10, IGFBP1, LDHA, PKM2, and lactate concentrations were dramatically upregulated and downregulated. And the expression of HOXA10, and IGFBP1 were dramatically decreased by PKM2-siRNA. CONCLUSIONS: HIF-1α plays a crucial role in the building of ER through regulating glycolysis.


Assuntos
Implantação do Embrião , Endométrio , Gravidez , Feminino , Humanos , Endométrio/metabolismo , Implantação do Embrião/fisiologia , Proteínas Homeobox A10/metabolismo , RNA Interferente Pequeno , Lactatos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
9.
J Clin Monit Comput ; 37(6): 1489-1495, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828296

RESUMO

SentriO Oxy™ is a newly available, Food and Drug Administration-approved oxygenation mask system that provides high oxygenation, even on low-flow (5-10 L/min) oxygen. This study aimed to accurately measure the intratracheal fraction of inspired oxygen (FiO2) using SentriO Oxy™ masks under relatively low oxygen flow rates. A manikin-ventilator-test lung simulation system was used. We measured FiO2 at the level of the carina, 5 minutes after applying 45 different respiratory parameter combinations using SentriO Oxy™ masks. Tidal volume (TV) was set to 300, 500, and 700 mL; respiratory rate (RR) was set to 8, 12, 16, 20, and 24 breaths per minute; and oxygen flow rate was set to 6, 8, and 10 L/min. Our hypothesis was that FiO2 would be proportional to the difference between oxygen flow rate and minute ventilation. FiO2 measured by smaller TV, lower RR, or higher oxygen flows revealed a significantly higher value, confirming our hypothesis. In addition, using linear regression analysis, we found that TV, RR, and oxygen flow were all significant factors influencing the measured FiO2. Our experiment proposed two prediction equations considering the oxygen flow rate, TV, and RR. The results of our study may provide information and prediction of FiO2 for clinicians to use SentriO Oxy™ masks during sedative anesthetic procedures under low oxygen flow rates.


Assuntos
Máscaras , Taxa Respiratória , Humanos , Ventiladores Mecânicos , Volume de Ventilação Pulmonar , Oxigênio , Oxigenoterapia
10.
Biol Reprod ; 107(4): 956-966, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35908189

RESUMO

The processes underlying adenomyosis are similar to those of tumor metastasis, and it is defined as progressive invasion by the endometrium and the subsequent creation of ectopic lesions. GRIM-19 regulates cell death via the mitochondrial respiratory chain. Stress following oxygen deprivation can induce tumor cell autophagy, leading to cell invasion and migration. Here, we revealed that GRIM-19 negatively regulates autophagy, and, at least in adenomyosis, decreased expression of GRIM-19 is accompanied by an increased level of autophagy and 5'-adenosine monophosphate-activated protein kinase-Unc-51 like autophagy activating kinase 1 (AMPK-ULK1) activation. Upregulation of GRIM-19 expression in human primary endometrial cells and ISHIKAWA cells inhibits autophagy via the AMPK-ULK1 pathway and helps control cell invasion and migration. In addition, we also identified increased expression of AMPK and ULK1, and higher levels of autophagy in the uterine tissues of GRIM-19+/- mice. Importantly, the function of the GRIM-19-AMPK-ULK1 axis in regulating autophagy in adenomyosis is similar to that of tumor tissues, which may help elucidate the regulation of adenomyosis tumor-like behavior, and is expected to help identify novel targets for the diagnosis and treatment of adenomyosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Adenomiose , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adenomiose/genética , Monofosfato de Adenosina , Animais , Proteínas Reguladoras de Apoptose , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , NADH NADPH Oxirredutases , Oxigênio , Transdução de Sinais
11.
Reproduction ; 163(6): 365-377, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35312628

RESUMO

Abnormal sperm parameters such as oligospermia, asthenospermia, and teratozoospermia result in male factor infertility. Previous studies have shown that mitochondria play an important role in human spermatozoa motility. But the related pathogenesis is far from elucidated. The aim of this study was to investigate the association between gene associated with retinoid-interferon-induced mortality 19 (GRIM19) and asthenospermia. In this study, Grim19 knockout model (Grim19+/- mouse) was created through genome engineering. We showed that compared with WT mice, the sperm count and motility of Grim19+/- mice were significantly reduced. Grim19 may contribute to sperm count and vitality by influencing the mitochondrial membrane potential, intracellular reactive oxygen species production, and increasing cell apoptosis. The spermatogenic cells of all levels in the lumen of the seminiferous tubules were sparsely arranged, and the intercellular space became larger in the testis tissue of Grim19+/- mice. The serum testosterone concentration is significantly reduced in Grim19+/- mice. The expression of steroid synthesis-related proteins STAR, CYP11A1, and HSD3B was decreased in Grim19+/- mice. To further confirm whether changes in testosterone biosynthesis were due to Grim19 downregulation, we validated this result using Leydig cells and TM3 cells. We also found that Notch signaling pathway was involved in Grim19-mediated testosterone synthesis to some extent. In conclusion, we revealed a mechanism underlying Grim19 mediated spermatozoa motility and suggested that Grim19 affected the synthesis of testosterone and steroid hormones in male mouse partly through regulating Notch signal pathways.


Assuntos
Astenozoospermia , Oligospermia , Animais , Astenozoospermia/metabolismo , Humanos , Masculino , Camundongos , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Oligospermia/metabolismo , Túbulos Seminíferos/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Testículo/metabolismo , Testosterona/biossíntese
12.
Clin Sci (Lond) ; 136(1): 121-137, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34821367

RESUMO

Chemokine (C-C motif) ligand 5 (CCL5) and CCR5, one of its receptors have been reported to be highly expressed in white adipose tissue (WAT) and are associated with the progression of inflammation and the development of insulin resistance in obese humans and mice. However, the role of CCL5/CCR5 signaling in obesity-associated dysregulation of energy metabolism remains unclear. Here, we demonstrate that global CCL5/CCR5 double knockout (DKO) mice have higher cold stress-induced energy expenditure and thermogenic function in brown adipose tissue (BAT) than wildtype (WT) mice. DKO mice have higher cold stress-induced energy expenditure and thermogenic function in BAT than WT mice. KEGG pathway analysis indicated that deletion of CCL5/CCR5 further facilitated the cold-induced expression of genes related to oxidative phosphorylation (OxPhos) and lipid metabolic pathways. In primary brown adipocytes of DKO mice, the augmentation of CL-316243-stimulated thermogenic and lipolysis responses was reversed by co-treatment with AMPKα1 and α2 short interfering RNA (siRNA). Overexpression of BAT CCL5/CCR5 genes by local lentivirus injection in WT mice suppressed cold stress-induced lipolytic processes and thermogenic activities. In contrast, knockdown of BAT CCL5/CCR5 signaling further up-regulated AMPK phosphorylation as well as thermogenic and lipolysis responses to chronic adrenergic stimuli and subsequently decreased level of body weight gain. Chronic knockdown of BAT CCL5/CCR5 signaling improved high-fat diet (HFD)-induced insulin resistance in WT mice. It is suggested that obesity-induced augmentation of adipose tissue (AT) CCL5/CCR5 signaling could, at least in part, suppress energy expenditure and adaptive thermogenesis by inhibiting AMPK-mediated lipolysis and oxidative metabolism in thermogenic AT to exacerbate the development of obesity and insulin resistance.


Assuntos
Tecido Adiposo Marrom/metabolismo , Quimiocina CCL5/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Receptores CCR5/metabolismo , Animais , Quimiocina CCL5/genética , Dieta Hiperlipídica , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Fosforilação Oxidativa , Receptores CCR5/genética , Transdução de Sinais , Termogênese
13.
Neurochem Res ; 47(12): 3805-3816, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287299

RESUMO

Neuropathic pain is a debilitating chronic disorder, significantly causing personal and social burdens, in which activated neuroinflammation is one major contributor. Thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33 is important for chronic inflammation. Linalyl acetate (LA) is main component of lavender oil with an anti-inflammatory property through TSLP signaling. The aim of the study is to investigate how LA regulates mechanical hyperalgesia after sciatic nerve injury (SNI). Adult Sprague-Dawley male rats were separated into 3 groups: control group, SNI group and SNI with LA group. LA was administrated intraperitoneally one day before SNI. Pain behavior test was evaluated through calibration forceps testing. Ipsilateral sciatic nerves (SNs), dorsal root ganglions (DRGs) and spinal cord were collected for immunofluorescence staining and Western blotting analyses. SNI rats were more sensitive to hyperalgesia response to mechanical stimulus since operation, which was accompanied by spinal cord glial cells reactions and DRG neuro-glial interaction. LA could relieve the pain sensation, proinflammatory cytokines and decrease the expression of TSLP/TSLPR complex. Also, LA could reduce inflammation through reducing IL-33 signaling. This study is the first to indicate that LA can modulate pain through TSLP/TSLPR and IL-33 signaling after nerve injury.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Masculino , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Interleucina-33 , Ratos Sprague-Dawley , Citocinas/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/complicações , Inflamação/tratamento farmacológico , Inflamação/complicações , Linfopoietina do Estroma do Timo
14.
Reprod Biomed Online ; 44(2): 211-219, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906422

RESUMO

RESEARCH QUESTION: Does the absence of GRIM19 affect pyroptosis of macrophages? Is the release of IL-1ß caused by pyroptosis a relevant factor in the regulation of adenomyosis progression? DESIGN: Endometrial tissues were collected from patients with (n = 12) and without (n = 12) adenomyosis. GRIM19 expression of adenomyosis tissues was analysed by western blot and real-time polymerase chain reaction (RT-PCR). In GRIM19 knockdown macrophages, pyroptosis-related factors expressions were also measured by western blot and RT-PCR. The human endometrial stromal cells (HESC) were co-cultured with GRIM19-depleted macrophages and IL-1ß neutralizing antibody to detect the effects of pyroptosis of macrophages on apoptosis, proliferation and migration of HESC. RESULTS: The expression of GRIM19 was significantly lower in adenomyosis (P = 0.0002). In THP-1-derived macrophages, the expression of NLRP3 (P < 0.0001), ASC (P = 0.0176), caspase-1 (P = 0.0368), GSDMD (P = 0.0453) and IL-1ß (P = 0.0208) are increased after downregulation of GRIM19. GRIM19 knockdown induced the release of IL-1ß (P = 0.0195) in THP-1-derived macrophages. The apoptosis of HESC co-cultured with GRIM19 knockdown macrophages was significantly inhibited (P < 0.0001), the proliferation (P = 0.0254) and migration (P < 0.0001) were markedly promoted. Existence of IL-1ß neutralizing antibody in supernatants recovered the effects (P < 0.0001) of GRIM19 knockdown macrophages on HESC. CONCLUSIONS: GRIM19 downregulation induces pyroptosis of macrophages through NLRP3 pathway, increases the secretion of IL-1ß and promotes adenomyosis progression.


Assuntos
Adenomiose , Proteínas Reguladoras de Apoptose/metabolismo , NADH NADPH Oxirredutases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Adenomiose/metabolismo , Anticorpos Neutralizantes/metabolismo , Regulação para Baixo , Feminino , Humanos , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
15.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361830

RESUMO

C-C chemokine receptor type 5 (CCR5) positively contributes to the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a common metabolic liver disease associated with chronic inflammation. CCR5 signaling also facilitates the immunosuppressive activity of a group of immature myeloid cells known as granulocytic myeloid-derived suppressor cells (g-MDSCs). While both hepatocyte and g-MDSC express CCR5, how CCR5 coordinates these two distinct cell types in the hepatic microenvironment remains largely unknown. Here, we used in vivo and ex vivo approaches to define the molecular details of how CCR5 mediates the crosstalk between hepatocytes and g-MDSCs in a mouse model of NAFLD. Global CCR5-deficient mice exhibited more severe steatosis, increased hepatic gene expression of lipogenesis, and exacerbated liver damage in diet-induced obesity. Either NAFLD or CCR5-deficiency per se is causative for the increase of g-MDSCs. Purified g-MDSCs have a higher survival rate in the fatty liver microenvironment, and blockade of CCR5 significantly decreases g-MDSCs' expression of anti-inflammatory factors. On the other hand, the null of CCR5 signaling increases hepatocytes' expression of lipogenic genes in the NAFLD microenvironment. Most importantly, inhibiting g-MDSCs' CCR5 signaling in the fatty liver microenvironment dramatically reduces STAT3 signaling, lipogenic, and pro-inflammatory gene expression in primary hepatocytes. Adoptive cell transfer experiments further demonstrate that CCR5-deficient g-MDSCs mitigate hepatic lipogenic gene expression without facilitating pro-inflammatory cytokine production and liver damage in NAFLD mice. These results suggest that targeting g-MDSCs' CCR5 signaling might serve as a potential therapeutic strategy for NAFLD.


Assuntos
Células Supressoras Mieloides , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Supressoras Mieloides/metabolismo , Lipogênese/genética , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Inflamação/patologia , Hepatócitos/metabolismo
16.
J Neurophysiol ; 125(1): 223-231, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326336

RESUMO

This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide (CGRP), IL-1ß, and TNFα in the TG and spinal trigeminal nucleus caudalis (SpVc) of rats with inferior alveolar nerve transection. OXTR, a G protein-coupled receptor, has been demonstrated to play a significant role in analgesia after activation by its canonical agonist oxytocin (OXT) in the dorsal root ganglion. However, the role of OXTR in the trigeminal nervous system on the orofacial neuropathic pain is still little known. In the present study, we aimed to investigate the regulation effect and mechanism of OXTR in the TG) and SpVc) on orofacial ectopic pain induced by trigeminal nerve injury. The inferior alveolar nerve (IAN) was transected to establish a ectopic pain model. A behavioral test with electronic von Frey filament demonstrated IAN transection (IANX) evoked mechanical hypersensitivity in the whisker pad from day 1 to at least day 14 after surgery. In addition, administration of OXT (50 and 100 µM) into the TG attenuated the mechanical hypersensitivity induced by IANX, which was reversed by pretreatment with L-368,899 (a selective antagonist of OXTR) into the TG. In addition, immunofluorescence showed the expression of OXTR in neurons in the TG and SpVc. Furthermore, Western blot analysis indicated that the upregulated expression of OXTR, CGRP, IL-1ß, and TNFα in the TG and SpVc after IANX was inhibited by the administration of OXT into the TG. And the inhibition effect of OXT on the expression of CGRP, IL-1ß, and TNFα was abolished by preapplication of OXTR antagonist L-368,899 into the TG.NEW & NOTEWORTHY This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide, IL-1ß, and TNF-α in the TG and spinal trigeminal nucleus caudalis of rats with inferior alveolar nerve transection.


Assuntos
Traumatismos do Nervo Mandibular/metabolismo , Dor/tratamento farmacológico , Receptores de Ocitocina/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Canfanos/farmacologia , Interleucina-1beta/metabolismo , Masculino , Traumatismos do Nervo Mandibular/fisiopatologia , Ocitocina/metabolismo , Ocitocina/uso terapêutico , Dor/etiologia , Piperazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
17.
Reproduction ; 162(5): 385-395, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34590585

RESUMO

The epithelial-to-mesenchymal transition may play a role in adenomyosis. GRIM19 expression is downregulated in adenomyotic lesions, and the effects of this downregulation in adenomyosis remain relatively unclear. In this study, we aimed to explore whether aberrant GRIM19 expression is associated with the epithelial-to-mesenchymal transition in adenomyosis and found that the expression of both GRIM19 and WT1 was low, and epithelial-to-mesenchymal transition, which included significant changes in CDH1, CDH2 and KRT8 expression, occurred in adenomyotic lesions, as confirmed by Western blotting and quantitative real-time PCR. We provided novel insights into WT1 expression in adenomyosis, revealing that WT1 expression was increased in the endometrial glands of adenomyotic lesions by immunohistochemistry. In vitro, knockdown of GRIM19 expression by small interfering RNA (siRNA) promoted the proliferation, migration and invasion of Ishikawa cells, as measured by Cell Counting Kit-8, wound healing assay and Transwell assays. Western blotting and quantitative real-time PCR confirmed that WT1 expression increased and epithelial-to-mesenchymal transition was induced, including the upregulation of CDH2 and downregulation of CDH1 and KRT8after transfecting the GRIM19 siRNA to Ishikawa cells. Furthermore, WT1 expression was upregulated and epithelial-to-mesenchymal transition was observed, including downregulation of CDH1 and KRT8in GRIM19 gene-knockdown mice. Upregulation of Wt1 expression in the endometrial glands of Grim19 knockdown mice was also verified by immunohistochemistry. Taken together, these results reveal that low expression of GRIM19 in adenomyosis may upregulate WT1 expression and induce epithelial-to-mesenchymal transition in the endometria, providing new insights into the pathogenesis of adenomyosis.


Assuntos
Adenomiose , Adenomiose/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Endométrio/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Camundongos , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADH NADPH Oxirredutases/farmacologia , Regulação para Cima , Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas WT1/farmacologia
18.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281158

RESUMO

Thymic stromal lymphopoietin (TSLP) is a well-known cytokine for T helper 2 inflammatory responses. A nerve injury activates the neuroinflammation cascade and neuron-glia interaction in dorsal root ganglions (DRG)s, leading to neuropathic pain. Therefore, this study was to investigate the role of TSLP after nerve injury. Male Sprague-Dawley rats were divided as an experimental group with chronic constriction injury (CCI) to the sciatic nerve and a control group. The mechanical pain threshold response was determined by calibration forceps. After assessment of mechanical allodynia, the ipsilateral spinal cord, DRG, sciatic nerve and skin were harvested. Immunofluorescence staining was performed to identify cell types with various markers. Western blot analyses were performed to evaluate protein expressions. Mechanical allodynia developed after CCI and persisted for the next 14 days. Astrocyte reactions occurred and continued until day 14, too. After CCI, DRG and the sciatic nerve also had significantly increased expressions of TSLP/TSLP-R/STAT5. The TSLPR was localized to sensory neuronal endings innervating the skin. This study is the first to demonstrate that the TSLP complex and the STAT5 pathway in nerve are potential therapeutic targets because of their roles in pain regulation after nerve injury.


Assuntos
Lesões por Esmagamento/metabolismo , Citocinas/metabolismo , Neurônios/metabolismo , Animais , Constrição Patológica/metabolismo , Lesões por Esmagamento/genética , Citocinas/genética , Gânglios Espinais/metabolismo , Expressão Gênica/genética , Hiperalgesia/metabolismo , Masculino , Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Neuroglia/metabolismo , Limiar da Dor , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/metabolismo , Linfopoietina do Estroma do Timo
19.
Eur J Neurosci ; 51(11): 2205-2218, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31705725

RESUMO

The cross talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs) is crucial for the regulation of inflammatory orofacial pain. Substance P (SP) plays an important role by activating neurokinin (NK)-I receptors in this cross talk. The activation of extracellular signal-regulated kinase (ERK) 1/2, protein kinase A (PKA) and protein kinase C (PKC) in neurons and SGCs of peripheral ganglions by peripheral inflammation is associated with inflammatory hypersensitivity. This study tested the hypothesis that SP evoked SP-NK-I receptor positive feedback via the Renin-Angiotensin System/B-Protein Kinase A-Rapidly Accelerates Fibrosarcoma-MEK-Extracellular Signal-Regulated Kinase (RAS/PKA-RAF-MEK-ERK) pathway, which is involved in pain hypersensitivity. Inflammatory models were induced in vivo by injecting Complete Freund's adjuvant (CFA) into the whisker pad of rats. SP was administrated to SGCs in vitro for investigating, whether SP regulates the expression of NK-I receptor in the SGC nucleus. The effects of RAS-RAF-MEK, PKA and PKC pathways in this process were measured by co-incubating SGCs with respective Raf, PKA, PKC and MEK inhibitors in vitro and by pre-injecting these inhibitors into the TG in vivo. SP significantly upregulated NK-I receptor, p-ERK1/2, Ras, B-Raf, PKA and PKC in SGCs under inflammatory conditions. In addition, L703,606 (NK-I receptor antagonist), U0126 (MEK inhibitor), Sorafenib (Raf inhibitor) and H892HCL (PKA inhibitor) but not chelerythrine chloride (PKC inhibitor) significantly decreased NK-I mRNA and protein levels induced by SP. The allodynia-related behavior evoked by CFA was inhibited by pre-injection of L703,606, U0126, Sorafenib and H892HCL into the TG. Overall, SP upregulates NK-I receptor in TG SGCs via PKA/RAS-RAF-MEK-ERK pathway activation, contributing to a positive feedback of SP-NK-I receptor in inflammatory orofacial pain.


Assuntos
Sistema de Sinalização das MAP Quinases , Substância P , Animais , MAP Quinases Reguladas por Sinal Extracelular , Dor Facial/induzido quimicamente , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Substância P/metabolismo
20.
Biochem Biophys Res Commun ; 527(4): 974-978, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32446558

RESUMO

Signal transducer and activator of transcription (STAT) proteins are latent cytoplasmic transcription factors essential for cytokine signaling. Our previous study showed that interleukin-3 (IL-3) induced STAT5 translocation to mitochondria and binding to mitochondrial DNA (mtDNA) in vitro. In this report, we further demonstrated in vivo binding of endogenous STAT5a to mtDNA transcriptional control region and reduced gene expression from all three mtDNA promoters after IL-3 stimulation. To specifically define the function of mitochondrial STAT5a, we generated mitochondrial-targeting wild-type and mutant STAT5a proteins. Compared with non-targeting STAT5a, mitochondrial-targeting wild-type STAT5a significantly reduced mitochondrial gene expression in transfected HEK293 cells. The level of attenuation was amplified in cells expressing constitutively active STAT5a, but abrogated in cells expressing DNA-binding-defective STAT5a. STAT5a-mediated repression of mtDNA expression also positively correlated with STAT5a binding to the E2 subunit of pyruvate dehydrogenase complex (PDC-E2), both a gate-keeping metabolic enzyme and a component of mtDNA nucleoid in mitochondrial matrix. Metabolic shift away from mitochondrial respiration is known in many cytokine-stimulated cells and cancer cells. STAT5a-mediated repression of mitochondrial gene expression and its interaction with PDC-E2 may provide important insights into its underlying mechanisms.


Assuntos
DNA Mitocondrial/metabolismo , Genes Mitocondriais , Fator de Transcrição STAT5/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/genética , Regulação para Baixo , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Fator de Transcrição STAT5/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA