Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Chem Biol ; 19(5): 565-574, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36593275

RESUMO

Heparan sulfate (HS) proteoglycans are extended (-GlcAß1,4GlcNAcα1,4-)n co-polymers containing decorations of sulfation and epimerization that are linked to cell surface and extracellular matrix proteins. In mammals, HS repeat units are extended by an obligate heterocomplex of two exostosin family members, EXT1 and EXT2, where each protein monomer contains distinct GT47 (GT-B fold) and GT64 (GT-A fold) glycosyltransferase domains. In this study, we generated human EXT1-EXT2 (EXT1-2) as a functional heterocomplex and determined its structure in the presence of bound donor and acceptor substrates. Structural data and enzyme activity of catalytic site mutants demonstrate that only two of the four glycosyltransferase domains are major contributors to co-polymer syntheses: the EXT1 GT-B fold ß1,4GlcA transferase domain and the EXT2 GT-A fold α1,4GlcNAc transferase domain. The two catalytic sites are over 90 Å apart, indicating that HS is synthesized by a dissociative process that involves a single catalytic site on each monomer.


Assuntos
Heparitina Sulfato , Proteínas , Animais , Humanos , Heparitina Sulfato/química , Glicosiltransferases/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Mamíferos
2.
Nat Chem Biol ; 19(8): 1022-1030, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37202521

RESUMO

Mammalian cell surface and secreted glycoproteins exhibit remarkable glycan structural diversity that contributes to numerous physiological and pathogenic interactions. Terminal glycan structures include Lewis antigens synthesized by a collection of α1,3/4-fucosyltransferases (CAZy GT10 family). At present, the only available crystallographic structure of a GT10 member is that of the Helicobacter pylori α1,3-fucosyltransferase, but mammalian GT10 fucosyltransferases are distinct in sequence and substrate specificity compared with the bacterial enzyme. Here, we determined crystal structures of human FUT9, an α1,3-fucosyltransferase that generates Lewisx and Lewisy antigens, in complex with GDP, acceptor glycans, and as a FUT9-donor analog-acceptor Michaelis complex. The structures reveal substrate specificity determinants and allow prediction of a catalytic model supported by kinetic analyses of numerous active site mutants. Comparisons with other GT10 fucosyltransferases and GT-B fold glycosyltransferases provide evidence for modular evolution of donor- and acceptor-binding sites and specificity for Lewis antigen synthesis among mammalian GT10 fucosyltransferases.


Assuntos
Fucosiltransferases , Glicosiltransferases , Animais , Humanos , Fucosiltransferases/genética , Fucosiltransferases/química , Fucosiltransferases/metabolismo , Antígenos do Grupo Sanguíneo de Lewis , Polissacarídeos/metabolismo , Mamíferos
3.
J Am Chem Soc ; 146(13): 9230-9240, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38494637

RESUMO

Keratan sulfate (KS) is a proteoglycan that is widely expressed in the extracellular matrix of various tissue types, where it performs multiple biological functions. KS is the least understood proteoglycan, which in part is due to a lack of panels of well-defined KS oligosaccharides that are needed for structure-binding studies, as analytical standards, to examine substrate specificities of keratinases, and for drug development. Here, we report a biomimetic approach that makes it possible to install, in a regioselective manner, sulfates and fucosides on oligo-N-acetyllactosamine (LacNAc) chains to provide any structural element of KS by using specific enzyme modules. It is based on the observation that α1,3-fucosides, α2,6-sialosides and C-6 sulfation of galactose (Gal6S) are mutually exclusive and cannot occur on the same LacNAc moiety. As a result, the pattern of sulfation on galactosides can be controlled by installing α1,3-fucosides or α2,6-sialosides to temporarily block certain LacNAc moieties from sulfation by keratan sulfate galactose 6-sulfotransferase (CHST1). The patterns of α1,3-fucosylation and α2,6-sialylation can be controlled by exploiting the mutual exclusivity of these modifications, which in turn controls the sites of sulfation by CHST1. Late-stage treatment with a fucosidase or sialidase to remove blocking fucosides or sialosides provides selectively sulfated KS oligosaccharides. These treatments also unmasked specific galactosides for further modification by CHST1. To showcase the potential of the enzymatic strategy, we have prepared a range of poly-LacNAc derivatives having different patterns of fucosylation and sulfation and several N-glycans decorated by specific arrangements of sulfates.


Assuntos
Galactose , Sulfato de Queratano , Sulfato de Queratano/química , Biomimética , Oligossacarídeos , Carboidrato Sulfotransferases , Proteoglicanas , Galactosídeos , Sulfatos
4.
J Biol Chem ; 298(10): 102474, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089065

RESUMO

N-glycosylation is an essential eukaryotic posttranslational modification that affects various glycoprotein properties, including folding, solubility, protein-protein interactions, and half-life. N-glycans are processed in the secretory pathway to form varied ensembles of structures, and diversity at a single site on a glycoprotein is termed 'microheterogeneity'. To understand the factors that influence glycan microheterogeneity, we hypothesized that local steric and electrostatic factors surrounding each site influence glycan availability for enzymatic modification. We tested this hypothesis via expression of reporter N-linked glycoproteins in N-acetylglucosaminyltransferase MGAT1-null HEK293 cells to produce immature Man5GlcNAc2 glycoforms (38 glycan sites total). These glycoproteins were then sequentially modified in vitro from high mannose to hybrid and on to biantennary, core-fucosylated, complex structures by a panel of N-glycosylation enzymes, and each reaction time course was quantified by LC-MS/MS. Substantial differences in rates of in vitro enzymatic modification were observed between glycan sites on the same protein, and differences in modification rates varied depending on the glycoenzyme being evaluated. In comparison, proteolytic digestion of the reporters prior to N-glycan processing eliminated differences in in vitro enzymatic modification. Furthermore, comparison of in vitro rates of enzymatic modification with the glycan structures found on the mature reporters expressed in WT cells correlated well with the enzymatic bottlenecks observed in vivo. These data suggest higher order local structures surrounding each glycosylation site contribute to the efficiency of modification both in vitro and in vivo to establish the spectrum of microheterogeneity in N-linked glycoproteins.


Assuntos
Glicoproteínas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Glicoproteínas/química , Glicoproteínas/metabolismo , Células HEK293 , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicosilação
5.
Isr J Chem ; 63(10-11)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38737670

RESUMO

Truncated mucin-type O-glycans, such as Tn-associated antigens, are aberrantly expressed biomarkers of cancer, but remain challenging to target. Reactive antibodies to these antigens either lack high-affinity or are prone to antigen escape. Here, we have developed a robust chemoenzymatic strategy for the global labeling of Tn-associated antigens, i.e. Tn (GalNAcα-O-Ser/Thr), Thomsen-Friedenreich (Galß1-3GalNAcα-O-Ser/Thr, TF) and STF (Neu5Acα2-3Galß1-3GalNAcα-O-Ser/Thr, STF) antigens, in human whole blood with high efficiency and selectivity. This method relies on the use of the O-glycan sialyltransferase ST6GalNAc1 to transfer a sialic acid-functionalized adaptor to the GalNAc residue of these antigens. By tagging, the adaptor functionalized antigens can be easily targeted by customized strategies such as, but not limited to, chimeric antigen receptor T-Cells (CAR-T). We expect this tagging system to find broad applications in cancer diagnostics and targeting in combination with established strategies.

6.
Infect Immun ; 90(5): e0068221, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35499339

RESUMO

Human intelectin-1 (hIntL-1) is a secreted glycoprotein capable of binding exocyclic 1,2-diols within surface glycans of human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, and Helicobacter pylori. For the latter, lectin binding was shown to cause bacterial agglutination and increased phagocytosis, suggesting a role for hIntL-1 in pathogen surveillance. In this study, we investigated the interactions between hIntL-1 and S. pneumoniae, the leading cause of bacterial pneumonia. We show that hIntL-1 also agglutinates S. pneumoniae serotype 43, which displays an exocyclic 1,2-diol moiety in its capsular polysaccharide but is unable to kill in a complement-dependent manner or to promote bacterial killing by peripheral blood mononuclear cells. In contrast, hIntL-1 not only significantly increases serotype-specific S. pneumoniae killing by neutrophils but also enhances the attachment of these bacteria to A549 lung epithelial cells. Taken together, our results suggest that hIntL-1 participates in host surveillance through microbe sequestration and enhanced targeting to neutrophils.


Assuntos
Neutrófilos , Streptococcus pneumoniae , Citocinas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Lectinas/metabolismo , Leucócitos Mononucleares/metabolismo , Neutrófilos/metabolismo , Fagocitose , Polissacarídeos/metabolismo , Sorogrupo , Streptococcus pneumoniae/metabolismo
7.
Glycobiology ; 32(8): 701-711, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35661210

RESUMO

Interaction of immune cells with the systemic environment is necessary for the coordinated development and execution of immune responses. Monocyte-macrophage lineage cells reside at the junction of innate and adaptive immunity. Previously we reported that the sialyltransferase ST6GAL1 in the extracellular milieu modulates B cell development and IgG production, granulocyte production, and attenuates acute airway inflammation to bacterial challenge in mouse models. Here, we report that extracellular ST6GAL1 also elicits profound responses in monocyte-macrophage lineage cells. We show that recombinant ST6GAL1 adheres to subsets of thioglycolate-elicited inflammatory cells in the mouse peritoneum and to cultured human monocyte THP-1 cells. Exposure of the inflammatory cells to recombinant ST6GAL1 elicited wholesale changes in the gene expression profile of primary mouse myeloid cells; most notable was the striking up-regulation of monocyte-macrophage and monocyte-derived dendritic cell development pathway signature genes and transcription factors PU.1, NFκB and their target genes, driving increased monocyte-macrophage population and survival ex vivo. In the cultured human monocyte cells, the essential cell surface receptor of the monocyte-macrophage lineage, the M-CSF receptor (M-CSF-R, Csfr1) was a target of extracellular ST6GAL1 catalytic activity. Extracellular ST6GAL1 activated the M-CSF-R and initiated intracellular signaling events, namely, the nuclear translocation of NFκB subunit p65, and phosphorylation of ERK 1/2 and AKT. The findings implicate extracellular ST6GAL1 in monocyte development by a mechanism initiated at the cell surface and support an emerging paradigm of an extracellular glycan-modifying enzyme as a central regulator coordinating immune hematopoietic cell development and function.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Monócitos , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , Fosforilação , Sialiltransferases/genética , Sialiltransferases/metabolismo , Transdução de Sinais , Células THP-1
8.
J Am Chem Soc ; 144(20): 9057-9065, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35544340

RESUMO

Glycosylation of proteins is a complicated post-translational modification. Despite the significant progress in glycoproteomics, accurate functions of glycoproteins are still ambiguous owing to the difficulty in obtaining homogeneous glycopeptides or glycoproteins. Here, we describe a streamlined chemoenzymatic method to prepare complex glycopeptides by integrating hydrophobic tag-supported chemical synthesis and enzymatic glycosylations. The hydrophobic tag is utilized to facilitate peptide chain elongation in the liquid phase and expeditious product separation. After removal of the tag, a series of glycans are installed on the peptides via efficient glycosyltransferase-catalyzed reactions. The general applicability and robustness of this approach are exemplified by efficient preparation of 16 well-defined SARS-CoV-2 O-glycopeptides, 4 complex MUC1 glycopeptides, and a 31-mer glycosylated glucagon-like peptide-1. Our developed approach will open up a new range of easy access to various complex glycopeptides of biological importance.


Assuntos
COVID-19 , Glicopeptídeos , SARS-CoV-2 , Glicopeptídeos/síntese química , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Humanos , Peptídeos/metabolismo , SARS-CoV-2/química
9.
Bioorg Chem ; 128: 106070, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35939855

RESUMO

Sulfation is a common modification of glycans and glycoproteins. Sulfated N-glycans have been identified in various glycoproteins and implicated for biological functions, but in vitro synthesis of structurally well-defined full length sulfated N-glycans remains to be described. We report here the first in vitro enzymatic sulfation of biantennary complex type N-glycans by recombinant human CHST2 (GlcNAc-6-O-sulfotransferase 1, GlcNAc6ST-1). We found that the sulfotransferase showed high antennary preference and could selectively sulfate the GlcNAc moiety located on the Manα1,3Man arm of the biantennary N-glycan. The glycan chain was further elongated by bacterial ß1,4 galactosyltransferase from Neiserria meningitidis and human ß1,4 galactosyltransferase IV(B4GALT4), which led to the formation of different sulfated N-glycans. Using rituximab as a model IgG antibody, we further demonstrated that the sulfated N-glycans could be efficiently transferred to an intact antibody by using a chemoenzymatic Fc glycan remodeling method, providing homogeneous sulfated glycoforms of antibodies. Preliminary binding analysis indicated that sulfation did not affect the apparent affinity of the antibody for FcγIIIa receptor.


Assuntos
Sulfatos , Sulfotransferases , Galactosiltransferases , Glicoproteínas , Humanos , Imunoglobulina G , Polissacarídeos/metabolismo , Sulfotransferases/metabolismo , Carboidrato Sulfotransferases
10.
Biochem J ; 478(8): 1571-1583, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33734311

RESUMO

The α1,6-fucosyltransferase, FUT8, is the sole enzyme catalyzing the core-fucosylation of N-glycoproteins in mammalian systems. Previous studies using free N-glycans as acceptor substrates indicated that a terminal ß1,2-GlcNAc moiety on the Man-α1,3-Man arm of N-glycan substrates is required for efficient FUT8-catalyzed core-fucosylation. In contrast, we recently demonstrated that, in a proper protein context, FUT8 could also fucosylate Man5GlcNAc2 without a GlcNAc at the non-reducing end. We describe here a further study of the substrate specificity of FUT8 using a range of N-glycans containing different aglycones. We found that FUT8 could fucosylate most of high-mannose and complex-type N-glycans, including highly branched N-glycans from chicken ovalbumin, when the aglycone moiety is modified with a 9-fluorenylmethyloxycarbonyl (Fmoc) moiety or in a suitable peptide/protein context, even if they lack the terminal GlcNAc moiety on the Man-α1,3-Man arm. FUT8 could also fucosylate paucimannose structures when they are on glycoprotein substrates. Such core-fucosylated paucimannosylation is a prominent feature of lysosomal proteins of human neutrophils and several types of cancers. We also found that sialylation of N-glycans significantly reduced their activity as a substrate of FUT8. Kinetic analysis demonstrated that Fmoc aglycone modification could either improve the turnover rate or decrease the KM value depending on the nature of the substrates, thus significantly enhancing the overall efficiency of FUT8 catalyzed fucosylation. Our results indicate that an appropriate aglycone context of N-glycans could significantly broaden the acceptor substrate specificity of FUT8 beyond what has previously been thought.


Assuntos
Eritropoetina/metabolismo , Fucose/metabolismo , Fucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Manose/metabolismo , Polissacarídeos/metabolismo , Animais , Sequência de Carboidratos , Galinhas , Eritropoetina/química , Eritropoetina/genética , Fluorenos/química , Fucose/química , Fucosiltransferases/química , Fucosiltransferases/genética , Expressão Gênica , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Células HEK293 , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos , Cinética , Manose/química , Ovalbumina/química , Ovalbumina/genética , Ovalbumina/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Polissacarídeos/química , Especificidade por Substrato
11.
Glycobiology ; 31(9): 1080-1092, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33997890

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), started in 2019 in China and quickly spread into a global pandemic. Nucleocapsid protein (N protein) is highly conserved and is the most abundant protein in coronaviruses and is thus a potential target for both vaccine and point-of-care diagnostics. N Protein has been suggested in the literature as having posttranslational modifications (PTMs), and accurately defining these PTMs is critical for its potential use in medicine. Reports of phosphorylation of N protein have failed to provide detailed site-specific information. We have performed comprehensive glycomics, glycoproteomics and proteomics experiments on two different N protein preparations. Both were expressed in HEK293 cells; one was in-house expressed and purified without a signal peptide (SP) sequence, and the other was commercially produced with a SP channeling it through the secretory pathway. Our results show completely different PTMs on the two N protein preparations. The commercial product contained extensive N- and O-linked glycosylation as well as O-phosphorylation on site Thr393. Conversely, the native N Protein model had O-phosphorylation at Ser176 and no glycosylation, highlighting the importance of knowing the provenance of any commercial protein to be used for scientific or clinical studies. Recent studies have indicated that N protein can serve as an important diagnostic marker for COVID-19 and as a major immunogen by priming protective immune responses. Thus, detailed structural characterization of N protein may provide useful insights for understanding the roles of PTMs on viral pathogenesis, vaccine design and development of point-of-care diagnostics.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , SARS-CoV-2/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Proteínas do Nucleocapsídeo de Coronavírus/química , Glicosilação , Células HEK293 , Humanos , Fosforilação , SARS-CoV-2/química
12.
Angew Chem Int Ed Engl ; 60(7): 3603-3610, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33314603

RESUMO

CD22, a member of Siglec family of sialic acid binding proteins, has restricted expression on B cells. Antibody-based agents targeting CD22 or CD20 on B lymphoma and leukemia cells exhibit clinical efficacy for treating these malignancies, but also attack normal B cells leading to immune deficiency. Here, we report a chemoenzymatic glycocalyx editing strategy to introduce high-affinity and specific CD22 ligands onto NK-92MI and cytokine-induced natural killer cells to achieve tumor-specific CD22 targeting. These CD22-ligand modified cells exhibited significantly enhanced tumor cell binding and killing in vitro without harming healthy B cells. For effective lymphoma cell killing in vivo, we further functionalized CD22 ligand-modified NK-92MI cells with the E-selectin ligand sialyl Lewis X to promote trafficking to bone marrow. The dual-functionalized cells resulted in the efficient suppression of B lymphoma in a xenograft model. Our results suggest that natural killer cells modified with glycan ligands to CD22 and selectins promote both targeted killing of B lymphoma cells and improved trafficking to sites where the cancer cells reside, respectively.


Assuntos
Células Matadoras Naturais/metabolismo , Linfoma de Células B/metabolismo , Engenharia Metabólica , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Configuração de Carboidratos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Ligantes , Linfoma de Células B/terapia , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/terapia , Polissacarídeos/metabolismo
13.
Anal Chem ; 92(4): 3228-3236, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31961140

RESUMO

Carbohydrate-Active enZymes (CAZymes) are involved in the synthesis, degradation, and modification of carbohydrates. They play critical roles in diverse physiological and pathophysiological processes, have important industrial and biotechnological applications, are important drug targets, and represent promising biomarkers for the diagnosis of a variety of diseases. Measurements of their activities, catalytic pathway, and substrate specificities are essential to a comprehensive understanding of the biological functions of CAZymes and exploiting these enzymes for industrial and biomedical applications. For glycosyl hydrolases a variety of sensitive and quantitative spectrophotometric techniques are available. However, measuring the activity of glycosyltransferases is considerably more challenging. Here, we introduce CUPRA-ZYME, a versatile and quantitative electrospray ionization mass spectrometry (ESI-MS) assay for measuring the kinetic parameters of CAZymes, monitoring reaction pathways, and profiling substrate specificities. The method employs the recently developed competitive universal proxy receptor assay (CUPRA), implemented in a time-resolved manner. Measurements of the hydrolysis kinetics of CUPRA substrates containing ganglioside oligosaccharides by the glycosyl hydrolase human neuraminidase 3 served to validate the reliability of kinetic parameters measured by CUPRA-ZYME and highlight its use in establishing catalytic pathways. Applications to libraries of substrates demonstrate the potential of the assay for quantitative profiling of the substrate specificities glycosidases and glycosyltransferases. Finally, we show how the comparison of the reactivity of CUPRA substrates and glycan substrates present on glycoproteins, measured simultaneously, affords a unique opportunity to quantitatively study how the structure and protein environment of natural glycoconjugate substrates influences CAZyme activity.


Assuntos
Metabolismo dos Carboidratos , Ensaios Enzimáticos/métodos , Espectrometria de Massas por Ionização por Electrospray , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Lactose/análogos & derivados , Lactose/metabolismo , Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Especificidade por Substrato
14.
Nat Chem Biol ; 14(2): 156-162, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251719

RESUMO

Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.


Assuntos
Perfilação da Expressão Gênica , Sialiltransferases/química , Animais , Baculoviridae/metabolismo , Cristalografia por Raios X , Monofosfato de Citidina/química , Vetores Genéticos , Glicosídeo Hidrolases/química , Glicosilação , Células HEK293 , Humanos , Insetos , Cinética , Proteínas Recombinantes/química , Sulfotransferases/química
15.
Angew Chem Int Ed Engl ; 59(30): 12493-12498, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32396713

RESUMO

Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized "on chip" by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.


Assuntos
Glicosiltransferases/química , Plantas/enzimologia , Polissacarídeos/análise , Parede Celular/química
16.
Angew Chem Int Ed Engl ; 58(40): 14327-14333, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295389

RESUMO

Dynamic turnover of cell-surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two-step labeling sequence is required, which suffers from the tissue-penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single-step fluorescent glycan labeling strategy by using fluorophore-tagged analogues of the nucleotide sugars. Injecting fluorophore-tagged sialic acid and fucose into the yolk of zebrafish embryos at the one-cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.


Assuntos
Corantes Fluorescentes/metabolismo , Nucleotídeos/metabolismo , Polissacarídeos/metabolismo , Açúcares/metabolismo , Animais , Corantes Fluorescentes/química , Estrutura Molecular , Nucleotídeos/química , Polissacarídeos/química , Açúcares/química , Peixe-Zebra/embriologia
17.
Nat Chem ; 16(6): 881-892, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844638

RESUMO

Ganglioside glycans are ubiquitous and complex biomolecules that are involved in a wide range of biological functions and disease processes. Variations in sialylation and sulfation render the structural complexity and diversity of ganglioside glycans, and influence protein-carbohydrate interactions. Structural and functional insights into the biological roles of these glycans are impeded due to the limited accessibility of well-defined structures. Here we report an integrated chemoenzymatic strategy for expeditious and systematic synthesis of a comprehensive 65-membered ganglioside glycan library covering all possible patterns of sulfation and sialylation. This strategy relies on the streamlined modular assembly of three common sialylated precursors by highly stereoselective iterative sialylation, modular site-specific sulfation through flexible orthogonal protecting-group manipulations and enzymatic-catalysed diversification using three sialyltransferase modules and a galactosidase module. These diverse ganglioside glycans enable exploration into their structure-function relationships using high-throughput glycan microarray technology, which reveals that different patterns of sulfation and sialylation on these glycans mediate their unique binding specificities.


Assuntos
Gangliosídeos , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/metabolismo , Gangliosídeos/química , Gangliosídeos/metabolismo , Sialiltransferases/metabolismo , Sialiltransferases/química , Sulfatos/química , Sulfatos/metabolismo , Glicômica/métodos
18.
Sci Rep ; 13(1): 21684, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066107

RESUMO

Glycosyltransferases (GTs) are enzymes that catalyze the formation of glycosidic bonds and hundreds of GTs have been identified so far in humans. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) has been associated with central nervous system diseases and cancer. However, evidence on its enzymatic properties, including its substrates, has been scarcely described. In this paper, we have produced and purified recombinant secretory GLT8D1. The enzyme was found to be N-glycosylated. Differential scanning fluorimetry was employed to analyze the stabilization of GLT8D1 by Mn2+ and nucleotides, revealing UDP as the most stabilizing nucleotide scaffold. GLT8D1 displayed glycosyltransferase activity from UDP-galactose onto N-acetylgalactosamine but with a low efficiency. Modeling of the structure revealed similarities with other GT-A fold enzymes in CAZy family GT8 and glycosyltransferases in other families with galactosyl-, glucosyl-, and xylosyltransferase activities, each with retaining catalytic mechanisms. Our study provides novel structural and functional insights into the properties of GLT8D1 with implications in pathological processes.


Assuntos
Galactosiltransferases , Glicosiltransferases , Humanos , Galactosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Catálise , Difosfato de Uridina
19.
JACS Au ; 3(11): 3155-3164, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034954

RESUMO

Keratan sulfate (KS) is a glycosaminoglycan that is widely expressed in the extracellular matrix of various tissue types, where it is involved in many biological processes. Herein, we describe a chemo-enzymatic approach to preparing well-defined KS oligosaccharides by exploiting the known and newly discovered substrate specificities of relevant sulfotransferases. The premise of the approach is that recombinant GlcNAc-6-O-sulfotransferases (CHST2) only sulfate terminal GlcNAc moieties to give GlcNAc6S that can be galactosylated by B4GalT4. Furthermore, CHST1 can modify the internal galactosides of a poly-LacNAc chain; however, it was found that a GlcNAc6S residue greatly increases the reactivity of CHST1 of a neighboring and internal galactoside. The presence of a 2,3-linked sialoside further modulates the site of modification by CHST1, and a galactoside flanked by 2,3-Neu5Ac and GlcNAc6S is preferentially sulfated over the other Gal residues. The substrate specificities of CHST1 and 2 were exploited to prepare a panel of KS oligosaccharides, including selectively sulfated N-glycans. The compounds and several other reference derivatives were used to construct a microarray that was probed for binding by several plant lectins, Siglec proteins, and hemagglutinins of influenza viruses. It was found that not only the sulfation pattern but also the presentation of epitopes as part of an O- or N-glycan determines binding properties.

20.
Nat Plants ; 9(3): 486-500, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849618

RESUMO

Rhamnogalacturonan I (RGI) is a structurally complex pectic polysaccharide with a backbone of alternating rhamnose and galacturonic acid residues substituted with arabinan and galactan side chains. Galactan synthase 1 (GalS1) transfers galactose and arabinose to either extend or cap the ß-1,4-galactan side chains of RGI, respectively. Here we report the structure of GalS1 from Populus trichocarpa, showing a modular protein consisting of an N-terminal domain that represents the founding member of a new family of carbohydrate-binding module, CBM95, and a C-terminal glycosyltransferase family 92 (GT92) catalytic domain that adopts a GT-A fold. GalS1 exists as a dimer in vitro, with stem domains interacting across the chains in a 'handshake' orientation that is essential for maintaining stability and activity. In addition to understanding the enzymatic mechanism of GalS1, we gained insight into the donor and acceptor substrate binding sites using deep evolutionary analysis, molecular simulations and biochemical studies. Combining all the results, a mechanism for GalS1 catalysis and a new model for pectic galactan side-chain addition are proposed.


Assuntos
Galactanos , Glicosiltransferases , Galactanos/metabolismo , Glicosiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA