Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Mol Genet ; 25(12): 2564-2577, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27260405

RESUMO

Spinal muscular atrophy is a devastating disease that is characterized by degeneration and death of a specific subclass of motor neurons in the anterior horn of the spinal cord. Although the gene responsible, survival motor neuron 1 (SMN1), was identified 20 years ago, it has proven difficult to investigate its effects in vivo. Consequently, a number of key questions regarding the molecular and cellular functions of this molecule have remained unanswered. We developed a Caenorhabditis elegans model of smn-1 loss-of-function using a neuron-specific RNA interference strategy to knock-down smn-1 selectively in a subclass of motor neurons. The transgenic animals presented a cell-autonomous, age-dependent degeneration of motor neurons detected as locomotory defects and the disappearance of presynaptic and cytoplasmic fluorescent markers in targeted neurons. This degeneration led to neuronal death as revealed by positive reactivity to genetic and chemical cell-death markers. We show that genes of the classical apoptosis pathway are involved in the smn-1-mediated neuronal death, and that this phenotype can be rescued by the expression of human SMN1, indicating a functional conservation between the two orthologs. Finally, we determined that Plastin3/plst-1 genetically interacts with smn-1 to prevent degeneration, and that treatment with valproic acid is able to rescue the degenerative phenotype. These results provide novel insights into the cellular and molecular mechanisms that lead to the loss of motor neurons when SMN1 function is reduced.


Assuntos
Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Degeneração Neural/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/fisiopatologia , Fenótipo , Ligação Proteica/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Ácido Valproico/farmacologia
2.
Twin Res Hum Genet ; 14(5): 408-16, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21962132

RESUMO

Genes in the TGF9 signaling pathway play important roles in the regulation of ovarian follicle growth and ovulation rate. Mutations in three genes in this pathway, growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and the bone morphogenetic protein receptor B 1 (BMPRB1), influence dizygotic (DZ) twinning rates in sheep. To date, only variants in GDF9 and BMP15, but not their receptors transforming growth factor ß receptor 1 (TGFBR1), bone morphogenetic protein receptor 2 (BMPR2) and BMPR1B, have been investigated with respect to their roles in human DZ twinning. We screened for rare and novel variants in TGFBR1, BMPR2 and BMPR1B in mothers of dizygotic twins (MODZT) from twin-dense families, and assessed association between genotyped and imputed variants and DZ twinning in another large sample of MODZT. Three novel variants were found: a deep intronic variant in BMPR2, and one intronic and one non-synonymous exonic variant in BMPRB1 which would result in the replacement of glutamine by glutamic acid at amino acid position 294 (p.Gln294Glu). None of these variants were predicted to have major impacts on gene function. However, the p.Gln294Glu variant changes the same amino acid as a sheep BMPR1B functional variant and may have functional consequences. Six BMPR1B variants were marginally associated with DZ twinning in the larger case-control sample, but these were no longer significant once multiple testing was taken into account. Our results suggest that variation in the TGF9 signaling pathway type II receptors has limited effects on DZ twinning rates in humans.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Variação Genética/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Gêmeos Dizigóticos/genética , DNA/análise , DNA/genética , Estudos de Associação Genética , Humanos , Reação em Cadeia da Polimerase , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais
3.
Front Cell Dev Biol ; 9: 611601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169068

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is characterized by degeneration of motor neurons in the brain and spinal cord. Cytoplasmic inclusions of TDP-43 are frequently reported in motor neurons of ALS patients. TDP-43 has also been shown to associate with stress granules (SGs), a complex of proteins and mRNAs formed in response to stress stimuli that temporarily sequester mRNA translation. The effect of pathogenic TDP-43 mutations within glycine-rich regions (where the majority of ALS-causing TDP-43 mutations occur) on SG dynamics in motor neurons is poorly understood. To address this issue, we generated murine NSC-34 cell lines that stably over-express wild type TDP-43 (TDP-43 W T ) or mutant forms (ALS-causing TDP-43 mutations TDP-43 A315T or TDP-43 M337V). We then differentiated these NSC-34 lines into motoneuron-like cells and evaluated SG formation and disassembly kinetics in response to oxidative or osmotic stress treatment. Wild type and mutant TDP-43 appeared to be largely retained in the nucleus following exposure to arsenite-induced oxidative stress. Upon arsenite removal, mutant TDP-43 clearly accumulated within HuR positive SGs in the cytoplasm, whereas TDP-43 W T remained mostly within the nucleus. 24 h following arsenite removal, all SGs were disassembled in both wild type and mutant TDP-43 expressing cells. By contrast, we observed significant differences in the dynamics of mutant TDP-43 association with SGs in response to hyperosmotic stress. Specifically, in response to sorbitol treatment, TDP-43 W T remained in the nucleus, whereas mutant TDP-43 relocalized to HuR positive SGs in the cytoplasm following exposure to sorbitol stress, resulting in a significant increase in TDP-43 SG numbers. These SGs remained assembled for 24 h following removal of sorbitol. Our data reveal that under certain stress conditions the rates of SG formation and disassembly is modulated by TDP-43 mutations associated with ALS, and suggest that this may be an early event in the seeding of insoluble cytoplasmic inclusions observed in ALS.

4.
Cell Rep ; 20(12): 2955-2965, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930688

RESUMO

The disproportionate length of an axon makes its structural and functional maintenance a major task for a neuron. The heterochronic gene lin-14 has previously been implicated in regulating the timing of key developmental events in the nematode C. elegans. Here, we report that LIN-14 is critical for maintaining neuronal integrity. Animals lacking lin-14 display axonal degeneration and guidance errors in both sensory and motor neurons. We demonstrate that LIN-14 functions both cell autonomously within the neuron and non-cell autonomously in the surrounding tissue, and we show that interaction between the axon and its surrounding tissue is essential for the preservation of axonal structure. Furthermore, we demonstrate that lin-14 expression is only required during a short period early in development in order to promote axonal maintenance throughout the animal's life. Our results identify a crucial role for LIN-14 in preventing axonal degeneration and in maintaining correct interaction between an axon and its surrounding tissue.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Genes de Helmintos , Proteínas Nucleares/genética , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Mutação/genética , Degeneração Neural/patologia , Proteínas Nucleares/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA